Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods
暂无分享,去创建一个
[1] Thierry Gallouët,et al. A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis , 2007 .
[2] Thierry Gallouët,et al. A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .
[3] Martin Vohralík,et al. Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods , 2010, Math. Comput..
[4] Ivar Aavatsmark,et al. Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..
[5] L. Beirão da Veiga. A residual based error estimator for the Mimetic Finite Difference method , 2008 .
[6] Alexandre Ern,et al. A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection–diffusion equations , 2007 .
[7] Alexandre Ern,et al. Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..
[8] Martin Vohralík,et al. A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..
[9] Mark Ainsworth,et al. Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..
[11] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[12] Rüdiger Verfürth,et al. Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire , 2003, Numerische Mathematik.
[13] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[14] Mario Ohlberger. A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .
[15] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[16] Pascal Omnes,et al. A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .
[17] Todd Arbogast,et al. Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..
[18] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[19] Yves Coudière,et al. CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .
[20] G. T. Eigestad,et al. On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability , 2005 .
[21] M. Ohlberger,et al. A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations , 2001, Numerische Mathematik.
[22] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[23] Rüdiger Verfürth,et al. Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.
[24] Stanimire Tomov,et al. A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations , 2002 .
[25] I. Faille,et al. A control volume method to solve an elliptic equation on a two-dimensional irregular mesh , 1992 .
[26] Stanimire Tomov,et al. Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..
[27] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[28] B. Rivière,et al. Part II. Discontinuous Galerkin method applied to a single phase flow in porous media , 2000 .
[29] Yves Achdou,et al. A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations , 2003, Numerische Mathematik.
[30] Martin Vohralík,et al. A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.
[31] Robert Eymard,et al. A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.
[32] R. Eymard,et al. Finite volume approximation of elliptic problems and convergence of an approximate gradient , 2001 .
[33] M. Vohralík. On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .
[34] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[35] Martin Vohralík,et al. A posteriori error estimates for finite volume and mixed finite element discretizations of convection–diffusion–reaction equations , 2007 .
[36] Jean E. Roberts,et al. Mixed and hybrid methods , 1991 .
[37] Abdellatif Agouzal,et al. A posteriori error estimator for finite volume methods , 2000, Appl. Math. Comput..
[38] Martin Vohralík,et al. Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems , 2009 .
[39] Kwang Y. Kim. A posteriori error analysis for locally conservative mixed methods , 2007, Math. Comput..
[40] Lutz Angermann. Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems , 2005, Computing.
[41] G. Chavent,et al. From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions , 2004 .
[42] Serge Nicaise,et al. A posteriori error estimations of some cell-centered finite volume methods , 2005, SIAM J. Numer. Anal..
[43] Do Y. Kwak,et al. A General Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids: The Overlapping Covolume Case , 2001, SIAM J. Numer. Anal..
[44] J. Maître,et al. Connection between finite volume and mixed finite element methods , 1996 .
[45] Lourenço Beirão da Veiga,et al. A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.
[46] Peter Knabner,et al. An error estimator for a finite volume discretization of density driven flow in porous media , 1998 .
[47] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[48] Franco Brezzi Michel Fortin,et al. Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .
[49] R. Eymard,et al. A Finite Volume Scheme for the Transport of Radionucleides in Porous Media , 2004 .
[50] Ivar Aavatsmark,et al. Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..
[51] R. Harrington. Part II , 2004 .
[52] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[53] Rüdiger Verfürth,et al. A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem , 2004, Numerical Algorithms.
[54] Serge Nicaise,et al. A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems , 2006, SIAM J. Numer. Anal..
[55] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[56] M. Vohralík. Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes , 2006 .
[57] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.