Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods

We derive in this paper a posteriori error estimates for discretizations of convection–diffusion–reaction equations in two or three space dimensions. Our estimates are valid for any cell-centered finite volume scheme, and, in a larger sense, for any locally conservative method such as the mimetic finite difference, covolume, and other. We consider meshes consisting of simplices or rectangular parallelepipeds and also provide extensions to nonconvex cells and nonmatching interfaces. We allow for the cases of inhomogeneous and anisotropic diffusion–dispersion tensors and of convection dominance. The estimates are established in the energy (semi)norm for a locally postprocessed approximate solution preserving the conservative fluxes and are of residual type. They are fully computable (all occurring constants are evaluated explicitly) and locally efficient (give a local lower bound on the error times an efficiency constant), so that they can serve both as indicators for adaptive refinement and for the actual control of the error. They are semi-robust in the sense that the local efficiency constant only depends on local variations in the coefficients and becomes optimal as the local Péclet number gets sufficiently small. Numerical experiments confirm their accuracy.

[1]  Thierry Gallouët,et al.  A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis , 2007 .

[2]  Thierry Gallouët,et al.  A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension , 2006 .

[3]  Martin Vohralík,et al.  Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods , 2010, Math. Comput..

[4]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..

[5]  L. Beirão da Veiga A residual based error estimator for the Mimetic Finite Difference method , 2008 .

[6]  Alexandre Ern,et al.  A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection–diffusion equations , 2007 .

[7]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[8]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[9]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[11]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[12]  Rüdiger Verfürth,et al.  Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire , 2003, Numerische Mathematik.

[13]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[14]  Mario Ohlberger A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .

[15]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[16]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[17]  Todd Arbogast,et al.  Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..

[18]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[19]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[20]  G. T. Eigestad,et al.  On the convergence of the multi-point flux approximation O-method: Numerical experiments for discontinuous permeability , 2005 .

[21]  M. Ohlberger,et al.  A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations , 2001, Numerische Mathematik.

[22]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[23]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[24]  Stanimire Tomov,et al.  A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations , 2002 .

[25]  I. Faille,et al.  A control volume method to solve an elliptic equation on a two-dimensional irregular mesh , 1992 .

[26]  Stanimire Tomov,et al.  Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..

[27]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[28]  B. Rivière,et al.  Part II. Discontinuous Galerkin method applied to a single phase flow in porous media , 2000 .

[29]  Yves Achdou,et al.  A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations , 2003, Numerische Mathematik.

[30]  Martin Vohralík,et al.  A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.

[31]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[32]  R. Eymard,et al.  Finite volume approximation of elliptic problems and convergence of an approximate gradient , 2001 .

[33]  M. Vohralík On the Discrete Poincaré–Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1 , 2005 .

[34]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[35]  Martin Vohralík,et al.  A posteriori error estimates for finite volume and mixed finite element discretizations of convection–diffusion–reaction equations , 2007 .

[36]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[37]  Abdellatif Agouzal,et al.  A posteriori error estimator for finite volume methods , 2000, Appl. Math. Comput..

[38]  Martin Vohralík,et al.  Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems , 2009 .

[39]  Kwang Y. Kim A posteriori error analysis for locally conservative mixed methods , 2007, Math. Comput..

[40]  Lutz Angermann Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems , 2005, Computing.

[41]  G. Chavent,et al.  From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions , 2004 .

[42]  Serge Nicaise,et al.  A posteriori error estimations of some cell-centered finite volume methods , 2005, SIAM J. Numer. Anal..

[43]  Do Y. Kwak,et al.  A General Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids: The Overlapping Covolume Case , 2001, SIAM J. Numer. Anal..

[44]  J. Maître,et al.  Connection between finite volume and mixed finite element methods , 1996 .

[45]  Lourenço Beirão da Veiga,et al.  A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.

[46]  Peter Knabner,et al.  An error estimator for a finite volume discretization of density driven flow in porous media , 1998 .

[47]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[48]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[49]  R. Eymard,et al.  A Finite Volume Scheme for the Transport of Radionucleides in Porous Media , 2004 .

[50]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[51]  R. Harrington Part II , 2004 .

[52]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[53]  Rüdiger Verfürth,et al.  A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem , 2004, Numerical Algorithms.

[54]  Serge Nicaise,et al.  A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems , 2006, SIAM J. Numer. Anal..

[55]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[56]  M. Vohralík Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes , 2006 .

[57]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.