The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment

[1]  Suzana Caetano da Silva Lannes,et al.  Powder Technology , 2020, Nature.

[2]  J. Mcmillan,et al.  Application of Electron Fractography to Fatigue Studies , 1968 .

[3]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[4]  R. Cahn,et al.  Materials science and engineering , 2023, Nature.

[5]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[6]  P. N. Hobson,et al.  Engineering for profit from waste. Proceedings of the Institution of Mechanical Engineers , 1988 .

[7]  Michael L. Bauccio,et al.  ASM Metals Reference Book , 1993 .

[8]  Christopher S. Lynch,et al.  Mechanics of Materials and Mechanics of Materials , 1996 .

[9]  R. Narayanasamy,et al.  Phenomenon of barrelling in aluminium solid cylinders during cold upset-forming , 1997 .

[10]  Frank W. Zok,et al.  The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading , 1999 .

[11]  J. Kaufman,et al.  Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures , 2000 .

[12]  M. Tisza Physical metallurgy for engineers , 2001 .

[13]  Charlie R. Brooks,et al.  Failure Analysis of Engineering Materials , 2001 .

[14]  V. C. Venkatesh,et al.  Journal of Materials Processing Technology: Preface , 2001 .

[15]  Xinyu Shi,et al.  Comparison of nano-indentation hardness to microhardness , 2005 .

[16]  W. Soboyejo,et al.  Indentation size effects in the nano- and micro-hardness of fcc single crystal metals , 2006 .

[17]  Anthony Turner,et al.  Materials by Design , 2008 .

[18]  A. Gebhardt,et al.  Additive Manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry , 2010 .

[19]  Information Pack,et al.  SURFACE AND COATINGS TECHNOLOGY An international journal devoted to the science and application of advanced surface treatments for improvement of material properties , 2011 .

[20]  Jan Bültmann,et al.  High Power Selective Laser Melting (HP SLM) of Aluminum Parts , 2011 .

[21]  Christopher J. Sutcliffe,et al.  Selective laser melting of aluminium components , 2011 .

[22]  J. Kruth,et al.  Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting , 2012 .

[23]  M. Weaver,et al.  Complete mechanical characterization of nanocrystalline Al–Mg alloy using nanoindentation , 2012 .

[24]  E. Brandl,et al.  Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior , 2012 .

[25]  L. Hao,et al.  Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe2O3 powder mixture , 2012 .

[26]  Tiedo Tinga,et al.  Principles of Loads and Failure Mechanisms: Applications in Maintenance, Reliability and Design , 2013 .

[27]  J. Kruth,et al.  Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder , 2013 .

[28]  E. O. Olakanmi Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties , 2013 .

[29]  H. Maier,et al.  On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance , 2013 .

[30]  Liang Hao,et al.  Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting , 2014 .

[31]  I. Ashcroft,et al.  Reducing porosity in AlSi10Mg parts processed by selective laser melting , 2014 .

[32]  M. Ramulu,et al.  Fatigue performance evaluation of selective laser melted Ti–6Al–4V , 2014 .

[33]  Ian A. Ashcroft,et al.  An error diffusion based method to generate functionally graded cellular structures , 2014 .

[34]  Faat Garifullin,et al.  Materials science and technology of materials , 2014 .

[35]  Konda Gokuldoss Prashanth,et al.  Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment , 2014 .

[36]  C. Tuck,et al.  Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V , 2014 .

[37]  Lai‐Chang Zhang,et al.  The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy , 2014 .

[38]  F. Walther,et al.  Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting , 2015 .

[39]  Reinhart Poprawe,et al.  Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg , 2015 .

[40]  J.-P. Kruth,et al.  Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation , 2015 .

[41]  Wei Wang,et al.  Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development , 2015, Materials & Design (1980-2015).

[42]  Philip J. Withers,et al.  Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting , 2015 .

[43]  Ian A. Ashcroft,et al.  On the Precipitation Hardening of Selective Laser Melted AlSi10Mg , 2015, Metallurgical and Materials Transactions A.

[44]  R. Hague,et al.  A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V , 2015, Metallurgical and Materials Transactions A.

[45]  Yan Zhou,et al.  Effect of heat treatment on CuCrZr alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism , 2016, Journal of Materials Research and Technology.

[46]  I. Ashcroft,et al.  On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties , 2016 .

[47]  Jay Patel,et al.  Additive manufacturing , 2016, XRDS.