Dust and gas in the local environments of gamma-ray bursts

Using a sample of gamma-ray burst (GRB) afterglows detected by both the X-Ray Telescope (XRT) and the UV/Optical Telescope (UVOT) on Swift, we modelled the spectral energy distributions (SEDs) to determine gas column densities and dust extinction in the GRB local environment. In six out of seven cases we find an X-ray absorber associated with the GRB host galaxy with column density (assuming solar abundances) ranging from (0.8‐7.7) × 10 21 cm −2 . We determine the rest-frame visual extinction AV using the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Galactic extinction curves to model the dust in the GRB host galaxy, and this ranges from AV = 0.12 ± 0.04 to 0.65 +0.08 −0.07 . The afterglow SEDs were typically best fit by a model with an SMC extinction curve. In only one case was the GRB afterglow better modelled by a Galactic extinction curve, which has a prominent absorption feature at 2175 A. We investigate the selection effects present in our sample and how these might distort the true distribution of AV in GRB host galaxies. We estimate that GRBs with no afterglow detected blueward of 5500 A have average rest-frame visual extinctions almost eight times those observed in the optically bright population of GRBs. This may help account for the ∼1/3 of GRBs observed by Swift that have no afterglow detected by UVOT.

[1]  Davide Lazzati,et al.  Time-dependent Photoionization in a Dusty Medium. I. Code Description and General Results , 2002, astro-ph/0206445.

[2]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[3]  Jason X. Prochaska,et al.  Dissecting the Circumstellar Environment of γ-Ray Burst Progenitors , 2006, astro-ph/0601057.

[4]  L. A. Antonelli,et al.  Absorption in Gamma-Ray Burst Afterglows , 2004, astro-ph/0403149.

[5]  C. Kouveliotou,et al.  The submillimetre properties of gamma-ray burst host galaxies , 2004 .

[6]  Richard M. Ambrosi,et al.  Readout modes and automated operation of the Swift X-ray Telescope , 2003, SPIE Optics + Photonics.

[7]  James E. Rhoads,et al.  X-Ray Destruction of Dust along the Line of Sight to γ-Ray Bursts , 2001, astro-ph/0106343.

[8]  N. R. Butler,et al.  When Do Internal Shocks End and External Shocks Begin? Early-Time Broadband Modeling of GRB 051111 , 2006, astro-ph/0606763.

[9]  Davide Lazzati,et al.  Time-dependent Photoionization in a Dusty Medium. II. Evolution of Dust Distributions and Optical Opacities , 2002, astro-ph/0211235.

[10]  Boulder,et al.  The clustering of the luminosities of optical afterglows of long Gamma Ray Bursts , 2005 .

[11]  E. Rol,et al.  How Special Are Dark Gamma-Ray Bursts: A Diagnostic Tool , 2005, astro-ph/0501375.

[12]  J. P. U. Fynbo,et al.  Absorption systems in the spectrum of GRB 021004 , 2002, astro-ph/0210654.

[13]  G. Ghirlanda,et al.  Clustering of the optical-afterglow luminosities of long gamma-ray bursts , 2006 .

[14]  P. Giommi,et al.  The Swift X-Ray Telescope , 1999 .

[15]  B. Draine Gamma-Ray Bursts in Molecular Clouds: H2 Absorption and Fluorescence , 2000 .

[16]  D. Burrows,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[17]  Titus J. Galama,et al.  High Column Densities and Low Extinctions of Gamma-Ray Bursts: Evidence for Hypernovae and Dust Destruction , 2000, astro-ph/0009367.

[18]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[19]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[20]  E. Rol,et al.  Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211 , 2005 .

[21]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[22]  L.Armus,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 PROBING THE COSMIC STAR FORMATION USING LONG GAMMA-RAY BURSTS: NEW CONSTRAINTS FROM THE SPITZER SPACE TELESCOPE ∗ , 2006 .

[23]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[24]  P. D'Avanzo,et al.  GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang , 2005 .

[25]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[26]  E. Fitzpatrick Interstellar extinction variations in the Large Magellanic Cloud , 1985 .

[27]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[28]  N. Gehrels,et al.  Bright X-ray Flares in Gamma-Ray Burst Afterglows , 2005, Science.

[29]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[30]  M. Capalbi,et al.  Swift panchromatic observations of the bright gamma-ray burst GRB 050525a , 2005 .

[31]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[32]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2006 .

[33]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[34]  Joshua S. Bloom,et al.  The Prompt Energy Release of Gamma-Ray Bursts using a Cosmological k-Correction , 2001, astro-ph/0102371.

[35]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[36]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[37]  Bing Zhang Gamma-Ray Bursts in the Swift Era , 2007, astro-ph/0701520.

[38]  M. Perri,et al.  Swift UVOT detection of GRB 050318 , 2005 .

[39]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[40]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.