What causes the death of dopaminergic neurons in Parkinson's disease?

The factors governing neuronal loss in Parkinson's disease (PD) are the subject of continuing speculation and experimental study. In recent years, factors that act on most or all cell types (pan-cellular factors), particularly genetic mutations and environmental toxins, have dominated public discussions of disease aetiology. Although there is compelling evidence supporting an association between disease risk and these factors, the pattern of neuronal pathology and cell loss is difficult to explain without cell-specific factors. This chapter focuses on recent studies showing that the neurons at greatest risk in PD--substantia nigra pars compacta (SNc) dopamine (DA) neurons--have a distinctive physiological phenotype that could contribute to their vulnerability. The opening of L-type calcium channels during autonomous pacemaking results in sustained calcium entry into the cytoplasm of SNc DA neurons, resulting in elevated mitochondrial oxidant stress and susceptibility to toxins used to create animal models of PD. This cell-specific stress could increase the negative consequences of pan-cellular factors that broadly challenge either mitochondrial or proteostatic competence. The availability of well-tolerated, orally deliverable antagonists for L-type calcium channels points to a novel neuroprotective strategy that could complement current attempts to boost mitochondrial function in the early stages of the disease.

[1]  J. Olsen,et al.  L‐type calcium channel blockers and Parkinson disease in Denmark , 2009, Annals of neurology.

[2]  Robert E Burke,et al.  A critical evaluation of the Braak staging scheme for Parkinson's disease , 2008, Annals of neurology.

[3]  Alessandro Stefani,et al.  Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones , 1994, British journal of pharmacology.

[4]  G. Obermair,et al.  Expression and 1,4-Dihydropyridine-Binding Properties of Brain L-Type Calcium Channel Isoforms , 2009, Molecular Pharmacology.

[5]  B. Bean Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Madesh,et al.  Calcium signaling and apoptosis. , 2003, Biochemical and biophysical research communications.

[7]  T. Ishikawa,et al.  Comparative nigrostriatal dopaminergic imaging with iodine-123-beta CIT-FP/SPECT and fluorine-18-FDOPA/PET. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  C. O’Brien,et al.  N-methyl-D-aspartate antagonists in the treatment of Parkinson's disease. , 1991, Archives of neurology.

[9]  Aj Lees,et al.  Parkinson's disease (vol 373, pg 2055, 2009) , 2009 .

[10]  Robert W. Taylor,et al.  High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease , 2006, Nature Genetics.

[11]  D. James Surmeier,et al.  ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease , 2007, Nature.

[12]  M. Mattson,et al.  Superoxide Flashes in Single Mitochondria , 2008, Cell.

[13]  B. Bean,et al.  Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons , 2002, Neuron.

[14]  Hansjürgen Bratzke,et al.  Stages in the development of Parkinson’s disease-related pathology , 2004, Cell and Tissue Research.

[15]  J. C. Greene,et al.  Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Tamas L. Horvath,et al.  Uncoupling Protein-2 Is Critical for Nigral Dopamine Cell Survival in a Mouse Model of Parkinson's Disease , 2005, The Journal of Neuroscience.

[17]  S. Hunot,et al.  Neuroinflammatory processes in Parkinson's disease , 2003, Annals of neurology.

[18]  H. Braak,et al.  Parkinson's disease: a dual‐hit hypothesis , 2007, Neuropathology and applied neurobiology.

[19]  R. Palmiter,et al.  Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior , 2009, Proceedings of the National Academy of Sciences.

[20]  C. Tanner,et al.  Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030 , 2007, Neurology.

[21]  A. Koschak,et al.  α1D (Cav1.3) Subunits Can Form L-type Ca2+ Channels Activating at Negative Voltages* , 2001, The Journal of Biological Chemistry.

[22]  P. Shepard,et al.  Apamin‐sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral dopamine neurons , 1996, Neuroreport.

[23]  P. Riederer,et al.  Time course of nigrostriatal degeneration in parkinson's disease , 1976, Journal of Neural Transmission.

[24]  M. Beal,et al.  Excitotoxicity and nitric oxide in parkinson's disease pathogenesis , 1998, Annals of neurology.

[25]  O. Hornykiewicz Dopamine (3-hydroxytyramine) and brain function. , 1966, Pharmacological reviews.

[26]  Changan Jiang,et al.  Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin , 2006, Nature.

[27]  S. Jick,et al.  Use of antihypertensives and the risk of Parkinson disease , 2008, Neurology.

[28]  Alain Dagher,et al.  Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years , 2008, Nature Medicine.

[29]  Pasko Rakic,et al.  JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. T. Williams,et al.  Membrane properties of rat locus coeruleus neurones , 1984, Neuroscience.

[31]  B. Amini,et al.  Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. , 1999, Journal of neurophysiology.

[32]  K. Petersen,et al.  Altered Brain Mitochondrial Metabolism in Healthy Aging as Assessed by in vivo Magnetic Resonance Spectroscopy , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  Kamran Khodakhah,et al.  Two Intracellular Pathways Mediate Metabotropic Glutamate Receptor-Induced Ca2+ Mobilization in Dopamine Neurons , 2003, The Journal of Neuroscience.

[34]  Ole A. Andreassen,et al.  Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis , 1999, Nature Medicine.

[35]  H. Uylings,et al.  Gender‐related changes in increase of dopaminergic neurons in the olfactory bulb of Parkinson's disease patients , 2008, Movement disorders : official journal of the Movement Disorder Society.

[36]  D. S. Albers,et al.  Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism , 2005, Amino Acids.

[37]  K. Jellinger A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. , 2009, Biochimica et biophysica acta.

[38]  D. Sulzer,et al.  Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease , 2007, Trends in Neurosciences.

[39]  E. Hirsch,et al.  Neuroinflammation in Parkinson's disease: a target for neuroprotection? , 2009, The Lancet Neurology.

[40]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: single spike firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  W. Schultz,et al.  Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. , 1990, Journal of neurophysiology.

[42]  D. Murchison,et al.  Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons , 2007, Aging cell.

[43]  A. Kupsch,et al.  1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level , 1996, Brain Research.

[44]  K. Takakusaki,et al.  Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat , 1997, Neuroscience.

[45]  D. Sulzer,et al.  Interplay between Cytosolic Dopamine, Calcium, and α-Synuclein Causes Selective Death of Substantia Nigra Neurons , 2009, Neuron.

[46]  M. Goldberg,et al.  Neuroinflammation in Parkinson's disease: Its role in neuronal death and implications for therapeutic intervention , 2010, Neurobiology of Disease.

[47]  A. Blair,et al.  Pesticide exposure and self-reported Parkinson's disease in the agricultural health study. , 2006, American journal of epidemiology.

[48]  Wade K. Smith,et al.  Disease‐specific patterns of locus coeruleus cell loss , 1992, Annals of neurology.

[49]  D. German,et al.  Medullary catecholaminergic neurons in the normal human brain and in Parkinson's disease , 1991, Annals of neurology.

[50]  R. Bakay,et al.  Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: Diminished compensatory mechanisms as a prelude to parkinsonism , 2007, Neurobiology of Disease.

[51]  J. Wickens,et al.  Space, time and dopamine , 2007, Trends in Neurosciences.

[52]  M. Elstner,et al.  Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions , 2008, Journal of Neurology.

[53]  Kim J. Krishnan,et al.  Age related mitochondrial degenerative disorders in humans , 2008, Biotechnology journal.

[54]  D. Nicholls Oxidative Stress and Energy Crises in Neuronal Dysfunction , 2008, Annals of the New York Academy of Sciences.

[55]  S. Kish,et al.  Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. , 1988, The New England journal of medicine.

[56]  S. Overeem,et al.  Hypocretin (orexin) loss in Parkinson's disease. , 2007, Brain : a journal of neurology.

[57]  Ping Hx,et al.  Apamin-sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral dopamine neurons , 1996 .

[58]  M. Beal,et al.  Aging, energy, and oxidative stress in neurodegenerative diseases , 1995, Annals of neurology.

[59]  T. Gasser Mendelian forms of Parkinson's disease. , 2009, Biochimica et biophysica acta.

[60]  R. Dixon,et al.  Age-related cognitive deficits mediated by changes in the striatal dopamine system. , 2000, The American journal of psychiatry.

[61]  I. Bezprozvanny Calcium signaling and neurodegenerative diseases. , 2009, Trends in molecular medicine.

[62]  S. Minucci,et al.  Protein Kinase C ß and Prolyl Isomerase 1 Regulate Mitochondrial Effects of the Life-Span Determinant p66Shc , 2007, Science.

[63]  S. Goto,et al.  Calbindin‐D28K in the basal ganglia of patients with parkinsonism , 1992, Annals of neurology.

[64]  John Hardy,et al.  Parkinson's disease , 2009, The Lancet.

[65]  H. Okano,et al.  Functional properties of dopaminergic neurones in the mouse olfactory bulb , 2005, The Journal of physiology.

[66]  D. Harman,et al.  Free‐Radical Theory of Aging , 1994, Antioxidants & redox signaling.

[67]  M. Eisenberg,et al.  Calcium channel blockers: an update. , 2004, The American journal of medicine.

[68]  D. James Surmeier,et al.  Robust Pacemaking in Substantia Nigra Dopaminergic Neurons , 2009, The Journal of Neuroscience.

[69]  I. Engberg,et al.  Nifedipine‐ and omega‐conotoxin‐sensitive Ca2+ conductances in guinea‐pig substantia nigra pars compacta neurones. , 1993, The Journal of physiology.

[70]  C. Shults Therapeutic role of coenzyme Q(10) in Parkinson's disease. , 2005, Pharmacology & therapeutics.

[71]  C. Wilson,et al.  Coupled oscillator model of the dopaminergic neuron of the substantia nigra. , 2000, Journal of neurophysiology.

[72]  P. Benfield,et al.  Isradipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cardiovascular disease. , 1990, Drugs.

[73]  H. Haas,et al.  Calcium‐dependent prepotentials contribute to spontaneous activity in rat tuberomammillary neurons. , 1996, The Journal of physiology.

[74]  M. Breteler,et al.  Epidemiology of Parkinson's disease , 2006, The Lancet Neurology.

[75]  H. Chapel,et al.  CLINICAL RELEVANCE OF SPECIFIC IgG ANTIBODIES TO CARDIOLIPIN , 1989, The Lancet.

[76]  Hypoxia increases ROS signaling and cytosolic Ca(2+) in pulmonary artery smooth muscle cells of mouse lungs slices. , 2010, Antioxidants & redox signaling.

[77]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[78]  B. Szende,et al.  (-)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. , 2004, Neurotoxicology.

[79]  Wade K. Smith,et al.  Midbrain dopaminergic cell loss in parkinson's disease: Computer visualization , 1989, Annals of neurology.

[80]  R. Rizzuto Intracellular Ca2+ pools in neuronal signalling , 2001, Current Opinion in Neurobiology.

[81]  D. D. Di Monte,et al.  Aging of the nigrostriatal system in the squirrel monkey , 2004, The Journal of comparative neurology.

[82]  J. Langston,et al.  Aetiology of Parkinsońs disease , 1983 .

[83]  Joachim Klose,et al.  Mitochondrial Dysfunction and Oxidative Damage in parkin-deficient Mice* , 2004, Journal of Biological Chemistry.

[84]  Dong-Kug Choi,et al.  Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  A. Koschak,et al.  Role of voltage-gated L-type Ca2+ channel isoforms for brain function. , 2006, Biochemical Society transactions.

[86]  G. Bernardi,et al.  L-Type Calcium Channels Mediate a Slow Excitatory Synaptic Transmission in Rat Midbrain Dopaminergic Neurons , 1998, The Journal of Neuroscience.

[87]  M. Vila,et al.  MPTP as a Mitochondrial Neurotoxic Model of Parkinson's Disease , 2004, Journal of bioenergetics and biomembranes.

[88]  Greenamyre Jt,et al.  N-methyl-D-aspartate antagonists in the treatment of Parkinson's disease. , 1991 .

[89]  B. Bean,et al.  Roles of Subthreshold Calcium Current and Sodium Current in Spontaneous Firing of Mouse Midbrain Dopamine Neurons , 2007, The Journal of Neuroscience.

[90]  Sten Orrenius,et al.  Calcium: Regulation of cell death: the calcium–apoptosis link , 2003, Nature Reviews Molecular Cell Biology.

[91]  R. Gillis,et al.  Hyperpolarization-activated currents, IH and IKIR, in rat dorsal motor nucleus of the vagus neurons in vitro. , 1994, Journal of neurophysiology.

[92]  D. Calne,et al.  AETIOLOGY OF PARKINSON'S DISEASE , 1983, The Lancet.

[93]  D. Vigetti,et al.  A potential reservoir of immature dopaminergic replacement neurons in the adult mammalian olfactory bulb , 2009, Pflügers Archiv - European Journal of Physiology.

[94]  J Q Trojanowski,et al.  Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[95]  E. Hirsch,et al.  Inflammation and dopaminergic neuronal loss in Parkinson's disease: a complex matter , 2003, Experimental Neurology.

[96]  T. Dawson,et al.  DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase , 2007, Proceedings of the National Academy of Sciences.

[97]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[98]  C. Saper,et al.  Preservation of hypothalamic dopaminergic neurons in Parkinson's disease , 1985, Annals of neurology.

[99]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[100]  S. Prusiner,et al.  Is Parkinson's disease a prion disorder? , 2009, Proceedings of the National Academy of Sciences.

[101]  Connie Marras,et al.  Occupation and risk of parkinsonism: a multicenter case-control study. , 2009, Archives of neurology.

[102]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[103]  B. Pakkenberg,et al.  Histological changes of the dopaminergic nigrostriatal system in aging , 2004, Cell and Tissue Research.

[104]  Dwight C. German,et al.  Mitochondria mass is low in mouse substantia nigra dopamine neurons: Implications for Parkinson's disease , 2007, Experimental Neurology.

[105]  A. Hung,et al.  Clinical trials for neuroprotection in Parkinson's disease: overcoming angst and futility? , 2007, Current opinion in neurology.

[106]  Raimund Mannhold Calciumantagonisten vom Dihydropyridintyp: Medizinisch‐chemische und molekularpharmakologische Eigenschaften , 1995 .

[107]  Takeshi Sakurai,et al.  Hypocretin/Orexin Excites Hypocretin Neurons via a Local Glutamate Neuron—A Potential Mechanism for Orchestrating the Hypothalamic Arousal System , 2002, Neuron.

[108]  G. Aghajanian,et al.  Pacemaker potentials of serotonergic dorsal raphe neurons: Contribution of a low‐threshold Ca2+ conductance , 1987, Synapse.

[109]  Stanley Fahn,et al.  Does levodopa slow or hasten the rate of progression of Parkinson’s disease? , 2005, Journal of Neurology.

[110]  J. Tepper,et al.  Electrophysiologically identified nigral dopaminergic neurons intracellularly labeled with HRP: light-microscopic analysis , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  A. Lang,et al.  Potential early markers of Parkinson disease in idiopathic REM sleep behavior disorder , 2006, Neurology.

[112]  K. Jellinger A critical reappraisal of current staging of Lewy-related pathology in human brain , 2008, Acta Neuropathologica.

[113]  R. Hauser,et al.  Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson's disease , 2008, Nature Medicine.

[114]  Todd B. Sherer,et al.  Chronic systemic pesticide exposure reproduces features of Parkinson's disease , 2000, Nature Neuroscience.

[115]  Jerome M. Siegel,et al.  Hypocretin (orexin) cell loss in Parkinson’s disease , 2007, Brain : a journal of neurology.

[116]  John P. Horn,et al.  Cav1.3 Channel Voltage Dependence, Not Ca2+ Selectivity, Drives Pacemaker Activity and Amplifies Bursts in Nigral Dopamine Neurons , 2009, The Journal of Neuroscience.

[117]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[118]  Belen Gago,et al.  Uncoupling protein‐2 promotes nigrostriatal dopamine neuronal function , 2006, The European journal of neuroscience.

[119]  B. A. Brooks,et al.  Midbrain Dopaminergic Cell Loss in Parkinson's Disease and MPTP‐Induced Parkinsonism: Sparing of Calbindin‐D25k—Containing Cells a , 1992, Annals of the New York Academy of Sciences.

[120]  Takeshi Sakurai,et al.  Hypothalamic Orexin Neurons Regulate Arousal According to Energy Balance in Mice , 2003, Neuron.

[121]  A. Reichert,et al.  Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin , 2007, The Journal of Neuroscience.

[122]  A. Graybiel,et al.  The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. , 1999, Brain : a journal of neurology.

[123]  Charles J. Wilson,et al.  An Intrinsic Neuronal Oscillator Underlies Dopaminergic Neuron Bursting , 2009, The Journal of Neuroscience.

[124]  A. Schapira Mitochondria in the aetiology and pathogenesis of Parkinson's disease. , 1999, The Lancet. Neurology.

[125]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[126]  D. Murchison,et al.  Low-voltage activated calcium currents increase in basal forebrain neurons from aged rats. , 1995, Journal of neurophysiology.

[127]  M. Bevan,et al.  Cellular Mechanisms Underlying Burst Firing in Substantia Nigra Dopamine Neurons , 2009, The Journal of Neuroscience.

[128]  F. Fujiyama,et al.  Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum , 2009, The Journal of Neuroscience.

[129]  D. Wallace A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine , 2005, Annual review of genetics.

[130]  Elisabet Englund,et al.  Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation , 2008, Nature Medicine.

[131]  T. Gasser,et al.  DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders. , 2009, Free radical biology & medicine.

[132]  T. Hastings,et al.  Biomedicine. Parkinson's--divergent causes, convergent mechanisms. , 2004, Science.

[133]  J. Kordower,et al.  Age‐related changes in dopamine transporters and accumulation of 3‐nitrotyrosine in rhesus monkey midbrain dopamine neurons: Relevance in selective neuronal vulnerability to degeneration , 2008, The European journal of neuroscience.

[134]  A. J. Lambert,et al.  Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. , 2004, Free radical biology & medicine.