Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia

This paper examines the spatial error structures of eight precipitation estimates derived from four different satellite retrieval algorithms including TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH), Global Satellite Mapping of Precipitation (GSMaP) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). All the original satellite and bias-corrected products of each algorithm (3B42RTV7 and 3B42V7, CMORPH_RAW and CMORPH_CRT, GSMaP_MVK and GSMaP_Gauge, PERSIANN_RAW and PERSIANN_CDR) are evaluated against ground-based Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) over Central Asia for the period of 2004 to 2006. The analyses show that all products except PERSIANN exhibit overestimation over Aral Sea and its surrounding areas. The bias-correction improves the quality of the original satellite TMPA products and GSMaP significantly but slightly in CMORPH and PERSIANN over Central Asia. 3B42RTV7 overestimates precipitation significantly with large Relative Bias (RB) (128.17%) while GSMaP_Gauge shows consistent high correlation coefficient (CC) (>0.8) but RB fluctuates between −57.95% and 112.63%. The PERSIANN_CDR outperforms other products in winter with the highest CC (0.67). Both the satellite-only and gauge adjusted products have particularly poor performance in detecting rainfall events in terms of lower POD (less than 65%), CSI (less than 45%) and relatively high FAR (more than 35%).

[1]  Weiyue Li,et al.  Intercomparison of Precipitation Estimates From WSR-88D Radar and TRMM Measurement Over Continental United States , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Jian Zhang,et al.  Evaluation and Uncertainty Estimation of NOAA/NSSL Next-Generation National Mosaic Quantitative Precipitation Estimation Product (Q2) over the Continental United States , 2013 .

[3]  M. Lehning,et al.  Inhomogeneous precipitation distribution and snow transport in steep terrain , 2008 .

[4]  V. Kousky,et al.  Assessing objective techniques for gauge‐based analyses of global daily precipitation , 2008 .

[5]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[6]  P. Xie,et al.  An Intercomparison of Gauge Observations and Satellite Estimates of Monthly Precipitation , 1995 .

[7]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[8]  Kenji Matsuura,et al.  Smart Interpolation of Annually Averaged Air Temperature in the United States , 1995 .

[9]  Richard Gloaguen,et al.  Impact of transient groundwater storage on the discharge of Himalayan rivers , 2012 .

[10]  Faisal Hossain,et al.  Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Nobuhiro Takahashi,et al.  Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land Using Statistical Information for Brightness Temperatures under No-Rain Conditions , 2005 .

[12]  Faisal Hossain,et al.  How well can we estimate error variance of satellite precipitation data around the world , 2014 .

[13]  Guosheng Liu,et al.  Passive Microwave Precipitation Retrievals Using TMI during the Baiu Period of 1998. Part I: Algorithm Description and Validation , 2000 .

[14]  Jun Matsumoto,et al.  Monthly adjustment of Global Satellite Mapping of Precipitation (GSMaP) data over the VuGia–ThuBon River Basin in Central Vietnam using an artificial neural network , 2013 .

[15]  R. Gairola,et al.  Validation of high-resolution TRMM-3B43 precipitation product using rain gauge measurements over Kyrgyzstan , 2012, Theoretical and Applied Climatology.

[16]  Fu Baopu The effects of orography on precipitation , 1995 .

[17]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[18]  S. Sorooshian,et al.  PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies , 2015 .

[19]  Jinsheng Roan,et al.  Retrievals for the Rainfall Rate over Land Using Special Sensor Microwave Imager Data during Tropical Cyclones: Comparisons of Scattering Index, Regression, and Support Vector Regression , 2012 .

[20]  Guosheng Liu,et al.  Passive microwave precipitation retrievals using TMI during the Baiu period of 1998 , 2000, SPIE Asia-Pacific Remote Sensing.

[21]  Yang Hong,et al.  Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? , 2013 .

[22]  Yang Hong,et al.  Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events? , 2013 .

[23]  Z. Kawasaki,et al.  A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data , 2009 .

[24]  F. Hirpa,et al.  Evaluation of High-Resolution Satellite Precipitation Products over Very Complex Terrain in Ethiopia , 2010 .

[25]  Misako Kachi,et al.  Improvement of High-Resolution Satellite Rainfall Product for Typhoon Morakot (2009) over Taiwan , 2013 .

[26]  P. Xie,et al.  Utilization of a New Gauge-based Daily Precipitation Dataset over Monsoon Asia for Validation of the Daily Precipitation Climatology Simulated by the MRI/JMA 20-km-mesh AGCM , 2005 .

[27]  Phillip A. Arkin,et al.  Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions , 1996 .

[28]  Richard Gloaguen,et al.  Evaluation of precipitation data sets along the Himalayan front , 2011 .

[29]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[30]  Y. Hong,et al.  Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China , 2013 .

[31]  P. Xie,et al.  Performance of high‐resolution satellite precipitation products over China , 2010 .

[32]  Yang Hong,et al.  Evaluation of the potential of NASA multi‐satellite precipitation analysis in global landslide hazard assessment , 2006 .

[33]  Mekonnen Gebremichael,et al.  Evaluation Through Independent Measurements: Complex Terrain and Humid Tropical Region in Ethiopia , 2010 .

[34]  Kaoru Takara,et al.  Verification of GSMaP Rainfall Estimates over the Central Himalayas , 2011 .

[35]  P. Xie,et al.  Kalman Filter–Based CMORPH , 2011 .

[36]  Y. Hong,et al.  Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River , 2013 .

[37]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[38]  Mekonnen Gebremichael,et al.  Evaluation of satellite rainfall estimates over Ethiopian river basins , 2010 .

[39]  Inge Sandholt,et al.  Evaluation of remote‐sensing‐based rainfall products through predictive capability in hydrological runoff modelling , 2010 .

[40]  Y. Shimabukuro,et al.  Spatial patterns and fire response of recent Amazonian droughts , 2007 .

[41]  Guillaume Quantin,et al.  Evaluation of several rainfall products used for hydrological applications over West Africa using two high‐resolution gauge networks , 2013 .

[42]  R. Khanbilvardi,et al.  Bias Correction of Satellite Rainfall Estimation Using A Radar-Gauge Product , 2010 .

[43]  Vimal Mishra,et al.  Reliability of regional and global climate models to simulate precipitation extremes over India , 2014 .

[44]  Jan M. H. Hendrickx,et al.  Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales , 2011 .

[45]  M. Gebremichael,et al.  Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands , 2011 .

[46]  Faisal Hossain,et al.  Error Propagation of Satellite-Rainfall in Flood Prediction Applications over Complex Terrain: A Case Study in Northeastern Italy , 2010 .

[47]  G. Villarini,et al.  Product-Error-Driven Uncertainty Model for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data , 2007 .

[48]  Amir AghaKouchak,et al.  Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations , 2014 .

[49]  A. Kitoh,et al.  APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges , 2012 .

[50]  Christoph Schär,et al.  The precipitation climate of Central Asia—intercomparison of observational and numerical data sources in a remote semiarid region , 2008 .

[51]  P. Xie,et al.  A Gauge-Based Analysis of Daily Precipitation over East Asia , 2007 .

[52]  Fuzhong Weng,et al.  Microwave Emission and Scattering From Deserts: Theory Compared With Satellite Measurements , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Yang Hong,et al.  Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations , 2014, PloS one.

[54]  M. Rajeevan,et al.  A high resolution daily gridded rainfall dataset (1971―2005) for mesoscale meteorological studies , 2009 .

[55]  F. Joseph Turk,et al.  Evaluating High-Resolution Precipitation Products , 2008 .

[56]  J. Janowiak,et al.  COMPARISON OF NEAR-REAL-TIME PRECIPITATION ESTIMATES FROM SATELLITE OBSERVATIONS AND NUMERICAL MODELS , 2007 .

[57]  S. K. Dash,et al.  Validation of the TRMM Multi Satellite Rainfall Product 3B42 and estimation of scavenging coefficients for (131)I and (137)Cs using TRMM 3B42 rainfall data. , 2014, Journal of environmental radioactivity.

[58]  Misako Kachi,et al.  Verification of High-Resolution Satellite-Based Rainfall Estimates around Japan Using a Gauge-Calibrated Ground-Radar Dataset , 2009 .

[59]  T. Raziei,et al.  Spatial patterns and regimes of daily precipitation in Iran in relation to large‐scale atmospheric circulation , 2012 .

[60]  U. Germann,et al.  Radar precipitation measurement in a mountainous region , 2006 .

[61]  T. Raziei,et al.  Atmospheric circulation types and winter daily precipitation in Iran , 2013 .

[62]  Muhammad Aurang Zeb Mughal Pamir Alpine desert and tundra. , 2013 .

[63]  Yi-Bo Luo,et al.  Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China , 2014, Theoretical and Applied Climatology.

[64]  Nobuhiro Takahashi,et al.  The global satellite mapping of precipitation (GSMaP) project , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[65]  Hamidreza Norouzi,et al.  Systematic and random error components in satellite precipitation data sets , 2012 .

[66]  Witold F. Krajewski,et al.  Numerical simulations of radar rainfall error propagation , 2002 .

[67]  Y. Hong,et al.  Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response , 2004 .

[68]  Giovanni Battista Chirico,et al.  Sampling errors in rainfall measurements by weather radar , 2005 .

[69]  Weiyue Li,et al.  Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy Rainfall Event of 21 July 2012 , 2013 .

[70]  Yudong Tian,et al.  Systematic anomalies over inland water bodies in satellite‐based precipitation estimates , 2007 .

[71]  Kuolin Hsu,et al.  Satellite-Based Precipitation Measurement Using PERSIANN System , 2009 .

[72]  Jonathan M. Adams,et al.  Opposite trends in summer precipitation in South and North Korea , 2012 .

[73]  F. Turk,et al.  Component analysis of errors in satellite-based precipitation estimates , 2009 .

[74]  Kazumasa Aonashi,et al.  An over-ocean precipitation retrieval using SSM/I multichannel brightness temperatures , 1996 .

[75]  Faisal Hossain,et al.  Benchmarking High-Resolution Global Satellite Rainfall Products to Radar and Rain-Gauge Rainfall Estimates , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Misako Kachi,et al.  Gauge adjusted global satellite mapping of precipitation (GSMaP_Gauge) , 2013, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[77]  Paul L. Smith,et al.  A Study of Sampling-Variability Effects in Raindrop Size Observations , 1993 .

[78]  Akiyo Yatagai,et al.  Utilization of a rain-gauge-based daily precipitation dataset over Asia for validation of precipitation derived from TRMM/PR and JRA-25 , 2006, SPIE Asia-Pacific Remote Sensing.

[79]  Y. Hong,et al.  Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System , 2004 .

[80]  Y. Hong,et al.  Evaluation of Global Flood Detection Using Satellite-Based Rainfall and a Hydrologic Model , 2012 .

[81]  Phillip A. Arkin,et al.  An Intercomparison and Validation of High-Resolution Satellite Precipitation Estimates with 3-Hourly Gauge Data , 2009 .

[82]  Yang Hong,et al.  Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method , 2012 .

[83]  Emmanouil N. Anagnostou,et al.  Overview of Overland Satellite Rainfall Estimation for Hydro-Meteorological Applications , 2004 .

[84]  Ali Behrangi,et al.  What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? , 2014 .

[85]  M. Shrestha,et al.  Bias‐adjusted satellite‐based rainfall estimates for predicting floods: Narayani Basin , 2011 .

[86]  Yudong Tian,et al.  Evaluation of the High-Resolution CMORPH Satellite Rainfall Product Using Dense Rain Gauge Observations and Radar-Based Estimates , 2012 .

[87]  Yudong Tian,et al.  Multitemporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications , 2007 .

[88]  Tomoo Ushio,et al.  Evaluation of GSMaP Precipitation Estimates over the Contiguous United States , 2010 .

[89]  Munehisa K. Yamamoto,et al.  Comparison of Satellite Precipitation Products with Rain Gauge Data for the Khumb Region, Nepal Himalayas , 2011 .

[90]  Akiyo Yatagai,et al.  A 44-Year Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges , 2009 .

[91]  Craig F. Bohren,et al.  Radar Backscattering by Inhomogeneous Precipitation Particles , 1980 .

[92]  Shinta Seto,et al.  Performance evaluation of Global Satellite Mapping of Precipitation (GSMaP) products over the Chaophraya River basin, Thailand , 2014 .

[93]  Nobuhiro Takahashi,et al.  Introduction of a melting layer model to a rain retrieval algorithm for microwave radiometers , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[94]  Yang Hong,et al.  Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? , 2014 .

[95]  David H. Staelin,et al.  Correcting microwave precipitation retrievals for near-surface evaporation , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[96]  Pietro Ceccato,et al.  Validation and Intercomparison of Satellite Rainfall Estimates over Colombia , 2010 .

[97]  Misako Kachi,et al.  Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation , 2006, IEEE Transactions on Geoscience and Remote Sensing.