Soft computing: the convergence of emerging reasoning technologies

Abstract The term Soft Computing (SC) represents the combination of emerging problem-solving technologies such as Fuzzy Logic (FL), Probabilistic Reasoning (PR), Neural Networks (NNs), and Genetic Algorithms (GAs). Each of these technologies provide us with complementary reasoning and searching methods to solve complex, real-world problems. After a brief description of each of these technologies, we will analyze some of their most useful combinations, such as the use of FL to control GAs and NNs parameters; the application of GAs to evolve NNs (topologies or weights) or to tune FL controllers; and the implementation of FL controllers as NNs tuned by backpropagation-type algorithms.

[1]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[2]  W.J.M. Kickert ANALYSIS OF A FUZZY LOGIC CONTROLLER , 1993 .

[3]  Bernadette Bouchon-Meunier,et al.  Fuzzy Logic And Soft Computing , 1995 .

[4]  Eric Horvitz,et al.  Bounded Conditioning: Flexible Inference for Decisions under Scarce Resources , 2013, UAI 1989.

[5]  Piero P. Bonissone,et al.  Industrial applications of fuzzy logic at General Electric , 1995, Proc. IEEE.

[6]  H. Takagi,et al.  Integrating Design Stages of Fuzzy Systems using Genetic Algorithms 1 , 1993 .

[7]  Andrea Bonarini,et al.  A simple direct adaptive fuzzy controller derived from its neutral equivalent , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[8]  Frank Klawonn,et al.  Modifications of genetic algorithms for designing and optimizing fuzzy controllers , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[9]  C C Lee,et al.  FUZZY LOGIC IN CONTROL SYSTEM FUZZY LOGIC CONTROLLER-PART II , 1990 .

[10]  Richard O. Duda,et al.  Subjective bayesian methods for rule-based inference systems , 1976, AFIPS '76.

[11]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[12]  C. L. Karr,et al.  Fuzzy control of pH using genetic algorithms , 1993, IEEE Trans. Fuzzy Syst..

[13]  H. Berenji,et al.  Clustering in product space for fuzzy inference , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[14]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[15]  Tom Tollenaere,et al.  SuperSAB: Fast adaptive back propagation with good scaling properties , 1990, Neural Networks.

[16]  Francisco Herrera,et al.  Tuning fuzzy logic controllers by genetic algorithms , 1995, Int. J. Approx. Reason..

[17]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[18]  John D. Lowrance,et al.  A Framework for Evidential-Reasoning Systems , 1990, AAAI.

[19]  Philippe Smets The transferable belief model and other interpretations of Dempster-Shafer's model , 1990, UAI.

[20]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[21]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[22]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[23]  Vittorio Maniezzo,et al.  NN's and GA's: evolving co-operative behaviour in adaptive learning agents , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[24]  L. Zheng,et al.  A practical guide to tune of proportional and integral (PI) like fuzzy controllers , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[25]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[26]  Hideyuki Takagi,et al.  Dynamic Control of Genetic Algorithms Using Fuzzy Logic Techniques , 1993, ICGA.

[27]  Vittorio Maniezzo,et al.  Genetic evolution of the topology and weight distribution of neural networks , 1994, IEEE Trans. Neural Networks.

[28]  Chuen-Tsai Sun,et al.  Functional equivalence between radial basis function networks and fuzzy inference systems , 1993, IEEE Trans. Neural Networks.

[29]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[30]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[31]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[32]  David Heckerman,et al.  A combination of cutset conditioning with clique-tree propagation in the Pathfinder system , 1990, UAI.

[33]  Hiroaki Kitano,et al.  Empirical Studies on the Speed of Convergence of Neural Network Training Using Genetic Algorithms , 1990, AAAI.

[34]  Robert J. Marks,et al.  Fuzzy control of backpropagation , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[35]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[36]  Enrique H. Ruspini,et al.  Possibility as similarity; the semantics of fuzzy logic , 1990, UAI.

[37]  J. Bezdek,et al.  Fuzzy partitions and relations; an axiomatic basis for clustering , 1978 .

[38]  Edward T. Lee,et al.  Fuzzy Sets and Neural Networks , 1974 .

[39]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[40]  Glenn Shafer,et al.  Perspectives on the theory and practice of belief functions , 1990, Int. J. Approx. Reason..

[41]  Jean-Michel Renders,et al.  Hybridizing genetic algorithms with hill-climbing methods for global optimization: two possible ways , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[42]  Piero P. Bonissone,et al.  Genetic algorithms for automated tuning of fuzzy controllers: a transportation application , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[43]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[44]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[45]  Piero P. Bonissone,et al.  RUM: A Layered Architecture for Reasoning with Uncertainty , 1987, IJCAI.

[46]  Judea Pearl,et al.  On Evidential Reasoning in a Hierarchy of Hypotheses , 1990, Artif. Intell..

[47]  Stephen Grossberg,et al.  ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures , 1990, Neural Networks.

[48]  Edward H. Shortliffe,et al.  A model of inexact reasoning in medicine , 1990 .

[49]  DANIELE MUNDICI,et al.  Averaging the truth-value in Łukasiewicz logic , 1995, Stud Logica.

[50]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[51]  Piero P. Bonissone,et al.  Summarizing and propagating uncertain information with triangular norms , 1990, Int. J. Approx. Reason..

[52]  M.A. Lee,et al.  Integrating design stage of fuzzy systems using genetic algorithms , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[53]  Judea Pearl,et al.  A Computational Model for Causal and Diagnostic Reasoning in Inference Systems , 1983, IJCAI.

[54]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[55]  Hugues Bersini,et al.  Comparing RBF and Fuzzy Inference Systems on theoretical and practical basis , 1995 .

[56]  Ronald Fagin,et al.  Uncertainty, belief, and probability , 1989, IJCAI 1989.

[57]  Piero P. Bonissone,et al.  Automated fuzzy knowledge base generation and tuning , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[58]  Jonathan Stillman,et al.  On Heuristics for Finding Loop Cutsets in Multiply-Connected Belief Networks , 2013, UAI 1990.

[59]  Ronald Fagin,et al.  Two Views of Belief: Belief as Generalized Probability and Belief as Evidence , 1992, Artif. Intell..

[60]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[61]  Kazuo Asakawa,et al.  A prototype of neuro-fuzzy cooperation system , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[62]  Francisco Herrera,et al.  A CLASSIFIED REVIEW ON THE COMBINATION FUZZY LOGIC–GENETIC ALGORITHMS BIBLIOGRAPHY: 1989–1995 , 1997 .

[63]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[64]  D. Dubois,et al.  Possibility theory as a basis for preference propagation in automated reasoning , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[65]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[66]  K. H. Chiang,et al.  Fuzzy logic controllers: from development to deployment , 1993, IEEE International Conference on Neural Networks.

[67]  Alice M. Agogino,et al.  IDES: influence diagram based expert system , 1987 .

[68]  Henri Prade,et al.  Fuzzy sets and probability: misunderstandings, bridges and gaps , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[69]  Hamid R. Berenji,et al.  Learning and tuning fuzzy logic controllers through reinforcements , 1992, IEEE Trans. Neural Networks.

[70]  Atam P. Dhawan,et al.  Use of genetic algorithms with backpropagation in training of feedforward neural networks , 1993, IEEE International Conference on Neural Networks.

[71]  Enrique H. Ruspini,et al.  On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..

[72]  Lawrence W. Stark,et al.  Computer pattern recognition techniques: electrocardiographic diagnosis , 1962, CACM.

[73]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[74]  S. Grossberg,et al.  ART 2: self-organization of stable category recognition codes for analog input patterns. , 1987, Applied optics.

[75]  Piero P. Bonissone,et al.  Selecting Uncertainty Calculi and Granularity: An Experiment in Trading-off Precision and Complexity , 1985, UAI.

[76]  Richard O. Duda,et al.  Subjective bayesian methods for rule-based inference systems , 1899, AFIPS '76.

[77]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[78]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[80]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[81]  Richard Bellman,et al.  On the Analytic Formalism of the Theory of Fuzzy Sets , 1973, Inf. Sci..

[82]  Charles L. Karr,et al.  Genetic algorithms for fuzzy controllers , 1991 .

[83]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[84]  J. Pearl Evidential reasoning under uncertainty , 1988 .

[85]  L. Valverde,et al.  ON MODE AND IMPLICATION IN APPROXIMATE REASONING , 1993 .

[86]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[87]  Xin Yao,et al.  A review of evolutionary artificial neural networks , 1993, Int. J. Intell. Syst..

[88]  J. D. Schaffer,et al.  Combinations of genetic algorithms and neural networks: a survey of the state of the art , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[89]  D. Adler,et al.  Genetic algorithms and simulated annealing: a marriage proposal , 1993, IEEE International Conference on Neural Networks.

[90]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[91]  H. Surmann,et al.  Self-Organizing and Genetic Algorithms for an Automatic Design of Fuzzy Control and Decision Systems , 1993 .

[92]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[93]  Petr Hájek,et al.  On Belief Functions , 1992, Advanced Topics in Artificial Intelligence.

[94]  Judea Pearl,et al.  Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach , 1982, AAAI.

[95]  Enrique H. Ruspini,et al.  Epistemic Logics, Probability, and the Calculus of Evidence , 1987, IJCAI.

[96]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[97]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[98]  Max Henrion Practical issues in constructing a Bayes belief network , 1988, Int. J. Approx. Reason..

[99]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[100]  Piero P. Bonissone,et al.  Approximate Reasoning Systems: A Personal Perspective , 1991, AAAI.

[101]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.