Development of a micro-miniature nanoindentation instrument with a force resolution of 1 nN

Accurate material testing based on the nanoindentation method always demands more and more accurate and sensible indentation instruments. A microelectromechanical system-based microminiature nanoindentation instrument is proposed, which features high force resolution (about 1 nN) and relatively large measurement range (up to 1 mN). The design of the microelectromechanical system is detailed, including the simulation of the mechanical system and the system performance. Preliminary experiments have been carried out with the aim to demonstrate the feasibility of this microminiature indentation system.

[1]  J. Chu,et al.  Mechanical characterization of thermal SiO2 micro-beams through tensile testing , 2009 .

[2]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[3]  Gao Yi-fei,et al.  INSTRUMENTED INDENTATION TEST FOR HARDNESS AND MATERIALS PARAMETERS OF METALLIC MATERIALS , 2003 .

[4]  Karla Hiller,et al.  Bonding and deep RIE: a powerful combination for high-aspect-ratio sensors and actuators , 2005, SPIE MOEMS-MEMS.

[5]  Konstantinos-Dionysios Bouzakis,et al.  Coating elastic–plastic properties determined by means of nanoindentations and FEM-supported evaluation algorithms , 2004 .

[6]  William C. Tang,et al.  Laterally Driven Polysilicon Resonant Microstructures , 1989 .

[7]  Xide Li,et al.  In situ and real-time tensile testing of thin films using double-field-of-view electronic speckle pattern interferometry , 2004 .

[8]  Tian Jian Lu,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Mems Actuators and Sensors: Observations on Their Performance and Selection for Purpose , 2022 .

[9]  S. Gao,et al.  A microelectromechanical force actuator for nano-tensile testing system , 2008, SPIE Photonics Europe.

[10]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[11]  R. Syms,et al.  Bulk micromachined silicon comb-drive electrostatic actuators with diode isolation , 1997 .

[12]  Y. Haga,et al.  Silicon bulk micromachining , 2000, 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.00EX451).

[13]  Peter Gumbsch,et al.  Micro-bending tests: A comparison between three-dimensional discrete dislocation dynamics simulations and experiments , 2008 .

[14]  Yong-Kweon Kim,et al.  A high-aspect-ratio comb actuator using UV-LIGA surface micromachining and (110) silicon bulk micromachining , 2002 .

[16]  Jing Li,et al.  MEMS deep-RIE fabrication process and device characterization , 2003, SPIE Optical Metrology.

[17]  Lisa A. Pruitt,et al.  Nanoindentation of biological materials , 2006 .

[18]  William D. Nix,et al.  A method for interpreting the data from depth-sensing indentation instruments , 1986 .

[19]  V. T. Srikar,et al.  Materials selection for microfabricated electrostatic actuators , 2003 .