PCA model building with missing data: New proposals and a comparative study

[1]  José Camacho,et al.  Visualizing Big data with Compressed Score Plots: Approach and research challenges , 2014 .

[2]  M. P. Gómez-Carracedo,et al.  A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets , 2014 .

[3]  Alberto Ferrer,et al.  Building covariance matrices with the desired structure , 2013 .

[4]  Steven D. Brown,et al.  Comparison of five iterative imputation methods for multivariate classification , 2013 .

[5]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[6]  Patrick Royston,et al.  Multiple imputation using chained equations: Issues and guidance for practice , 2011, Statistics in medicine.

[7]  Juha Karhunen,et al.  Robust PCA Methods for Complete and Missing Data , 2011 .

[8]  Rodrigo López‐Negrete de la Fuente,et al.  An efficient nonlinear programming strategy for PCA models with incomplete data sets , 2010 .

[9]  Alberto Ferrer,et al.  How to simulate normal data sets with the desired correlation structure , 2010 .

[10]  Sven Serneels,et al.  Principal component analysis for data containing outliers and missing elements , 2008, Comput. Stat. Data Anal..

[11]  M Daszykowski,et al.  Dealing with missing values and outliers in principal component analysis. , 2007, Talanta.

[12]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[13]  Alberto Ferrer,et al.  Framework for regression‐based missing data imputation methods in on‐line MSPC , 2005 .

[14]  D. Altman,et al.  Missing data , 2007, BMJ : British Medical Journal.

[15]  A. Ferrer,et al.  Dealing with missing data in MSPC: several methods, different interpretations, some examples , 2002 .

[16]  Philip R. Nelson,et al.  The Treatment Of Missing Measurements In PCA And PLS Models , 2002 .

[17]  D. Massart,et al.  Dealing with missing data: Part II , 2001 .

[18]  D. Massart,et al.  Dealing with missing data , 2001 .

[19]  T. Schneider Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. , 2001 .

[20]  R. Manne,et al.  Missing values in principal component analysis , 1998 .

[21]  Scott A Hutzler,et al.  Remote Near-Infrared Fuel Monitoring System , 1997 .

[22]  Joseph L Schafer,et al.  Analysis of Incomplete Multivariate Data , 1997 .

[23]  Gene H. Golub,et al.  Regularization by Truncated Total Least Squares , 1997, SIAM J. Sci. Comput..

[24]  P. A. Taylor,et al.  Missing data methods in PCA and PLS: Score calculations with incomplete observations , 1996 .

[25]  Barry M. Wise,et al.  RECENT ADVANCES IN MULTIVARIATE STATISTICAL PROCESS CONTROL: IMPROVING ROBUSTNESS AND SENSITIVITY , 1991 .

[26]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[27]  W J Krzanowski,et al.  Missing value imputation in multivariate data using the singular value decomposition of a matrix , 1988 .

[28]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[29]  Silvia Lanteri,et al.  Classification of olive oils from their fatty acid composition , 1983 .