Electric-double-layer field-effect transistors with ionic liquids.

Charge carrier control is a key issue in the development of electronic functions of semiconductive materials. Beyond the simple enhancement of conductivity, high charge carrier accumulation can realize various phenomena, such as chemical reaction, phase transition, magnetic ordering, and superconductivity. Electric double layers (EDLs), formed at solid-electrolyte interfaces, induce extremely large electric fields. This results in a high charge carrier accumulation in the solid, much more effectively than solid dielectric materials. In the present review, we describe recent developments in the field-effect transistors (FETs) with gate dielectrics of ionic liquids, which have attracted much attention due to their wide electrochemical windows, low vapor pressures, and high chemical and physical stability. We explain the capacitance effects of ionic liquids, and describe the various combinations of ionic liquids and organic and inorganic semiconductors that are used to achieve such effects as high transistor performance, insulator-metal transitions, superconductivity, and ferromagnetism, in addition to the applications of the ionic-liquid EDL-FETs in logic devices. We discuss the factors controlling the mobility and threshold voltage in these types of FETs, and show the ionic liquid dependence of the transistor performance.

[1]  Makoto Ue,et al.  Application of Low-Viscosity Ionic Liquid to the Electrolyte of Double-Layer Capacitors , 2003 .

[2]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[3]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[4]  Shimpei Ono,et al.  A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes , 2009 .

[5]  Hajime Matsumoto,et al.  Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte , 2005 .

[6]  J. Silver,et al.  Electrochromism in the transition-metal phthalocyanines. Part 2.—Structural changes in and properties of [Cr(pc)] and [Mn(pc)] films , 1992 .

[7]  T. Shimada,et al.  Electric Double Layer Gate Field-Effect Transistors Based on Si , 2010 .

[8]  H. Tachikawa,et al.  Reversible oxidation and rereduction of magnesium phthalocyanine electrodes. Electrochemical behavior and in situ Raman spectroscopy , 1986 .

[9]  S. Hotta,et al.  Ambipolar Organic Single‐Crystal Transistors Based on Ion Gels , 2012, Advanced materials.

[10]  K. Brown,et al.  Voltammetric, chronocoulometric, and spectroelectrochemical studies of electropolymerized films based on Cu(II/I)-4,9,16,23-tetraaminophthalocyanine , 1998 .

[11]  Jean-Luc Brédas,et al.  Single-electron transistor of a single organic molecule with access to several redox states , 2003, Nature.

[12]  H. Nakayama,et al.  Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer , 2012 .

[13]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[14]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[15]  K. Awaga,et al.  Electrochemical field-effect transistors of octathio[8]circulene robust thin films with ionic liquids , 2009 .

[16]  Hongtao Yuan,et al.  Tunable spin-orbit interaction in trilayer graphene exemplified in electric-double-layer transistors. , 2012, Nano letters.

[17]  K. Takagi,et al.  Electrochemical properties of novel ionic liquids for electric double layer capacitor applications , 2004 .

[18]  A. Afzali,et al.  High-mobility ultrathin semiconducting films prepared by spin coating , 2004, Nature.

[19]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[20]  S. Khondaker,et al.  Graphene based materials: Past, present and future , 2011 .

[21]  C. Frisbie,et al.  Size-dependent electrical transport in CdSe nanocrystal thin films. , 2010, Nano letters.

[22]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[23]  S. Baldelli,et al.  Surface structure at the ionic liquid-electrified metal interface. , 2008, Accounts of chemical research.

[24]  S. Baldelli,et al.  Sum frequency generation spectroscopy and double-layer capacitance studies of the 1-butyl-3-methylimidazolium dicyanamide-platinum interface. , 2006, The journal of physical chemistry. B.

[25]  J. Hunger,et al.  Temperature dependence of the dielectric properties and dynamics of ionic liquids. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  Peng Wang,et al.  Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. , 2003, Journal of the American Chemical Society.

[27]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[28]  J. Wilkes A short history of ionic liquids—from molten salts to neoteric solvents , 2002 .

[29]  Shriram Ramanathan,et al.  Relaxation dynamics of ionic liquid—VO2 interfaces and influence in electric double-layer transistors , 2012 .

[30]  Hongtao Yuan,et al.  Pulsed Laser Deposition and Ionic Liquid Gate Control of Epitaxial Bi2Se3 Thin Films , 2011 .

[31]  S. Trasatti The “absolute” electrode potential—the end of the story , 1990 .

[32]  Jack Hellerstedt,et al.  Phase diagram of electrostatically doped SrTiO3. , 2011, Physical review letters.

[33]  X. Leng,et al.  Indications of an electronic phase transition in two-dimensional superconducting YBa2Cu3O(7-x) thin films induced by electrostatic doping. , 2012, Physical review letters.

[34]  Koon Gee Neoh,et al.  Polymer electronic memories: Materials, devices and mechanisms , 2008 .

[35]  Hagen Klauk,et al.  Organic thin-film transistors. , 2010, Chemical Society reviews.

[36]  T. Lodge,et al.  “Cut and Stick” Rubbery Ion Gels as High Capacitance Gate Dielectrics , 2012, Advanced materials.

[37]  R. D. Gould Structure and electrical conduction properties of phthalocyanine thin films , 1996 .

[38]  U. Schubert,et al.  Inkjet Printing of Polymers: State of the Art and Future Developments , 2004 .

[39]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[40]  M. Watanabe,et al.  Brønsted acid-base ionic liquids for fuel cell electrolytes. , 2007, Chemical communications.

[41]  Y. Ohno,et al.  Electric-field-induced band gap of bilayer graphene in ionic liquid , 2011 .

[42]  A. Bollinger,et al.  Electric field effect on superconductivity in La2−xSrxCuO4 , 2012 .

[43]  A. Douvas,et al.  Molecular Storage Elements for Proton Memory Devices , 2008 .

[44]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[45]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[46]  A. Morpurgo,et al.  Tunable Fröhlich polarons in organic single-crystal transistors , 2006, Nature materials.

[47]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[48]  Peter Wasserscheid,et al.  Ionic Liquids for Electrolyte-Gating of ZnO Field-Effect Transistors , 2012 .

[49]  A. Yassar,et al.  All-Polymer Field-Effect Transistor Realized by Printing Techniques , 1994, Science.

[50]  Michael Grätzel,et al.  Solvent‐Free Ionic Liquid Electrolytes for Mesoscopic Dye‐Sensitized Solar Cells , 2009 .

[51]  E. Tutuc,et al.  Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers , 2012 .

[52]  F. Rosei,et al.  Heterocirculenes as a new class of organic semiconductors. , 2008, Chemical communications.

[53]  P. Ruden,et al.  Comparison of the Mobility–Carrier Density Relation in Polymer and Single‐Crystal Organic Transistors Employing Vacuum and Liquid Gate Dielectrics , 2009 .

[54]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[55]  Tobin J. Marks,et al.  Gate Dielectrics for Organic Field‐Effect Transistors: New Opportunities for Organic Electronics , 2005 .

[56]  Masashi Kawasaki,et al.  Insulator-to-metal transition in ZnO by electric double layer gating , 2007 .

[57]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[58]  K. Awaga,et al.  Ambipolar Carrier Injections Governed by Electrochemical Potentials of Ionic Liquids in Electric-Double-Layer Thin-Film Transistors of Lead- and Titanyl-Phthalocyanine , 2013 .

[59]  Timothy P. Lodge,et al.  Ion Gel-Gated Polymer Thin-Film Transistors: Operating Mechanism and Characterization of Gate Dielectric Capacitance, Switching Speed, and Stability , 2009 .

[60]  Hongtao Yuan,et al.  High‐Density Carrier Accumulation in ZnO Field‐Effect Transistors Gated by Electric Double Layers of Ionic Liquids , 2009 .

[61]  F. Rosei,et al.  Supramolecular assembly of heterocirculenes in 2D and 3D. , 2009, Chemical communications.

[62]  Y. Arakawa,et al.  Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates , 2007 .

[63]  P. Blom,et al.  Organic Nonvolatile Memory Devices Based on Ferroelectricity , 2010, Advanced materials.

[64]  C. Ahn,et al.  Electric field effect in correlated oxide systems , 2003, Nature.

[65]  A. Morpurgo,et al.  High-performance n-type organic field-effect transistors with ionic liquid gates , 2010, 1010.0769.

[66]  T. Lodge,et al.  High‐Capacitance Ion Gel Gate Dielectrics with Faster Polarization Response Times for Organic Thin Film Transistors , 2008 .

[67]  Liangbing Hu,et al.  Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures , 2011, Advanced materials.

[68]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Houlton,et al.  Electrochromism in the transition-metal phthalocyanines. Part 3.—Molecular organisation, reorganisation and assembly under the influence of an applied electric field. Response of [Fe(pc)] and [Fe(pc)Cl] , 1992 .

[70]  D. Inman,et al.  The electrical double layer in molten salts: Part 2. The double-layer capacitance , 1970 .

[71]  K. Awaga,et al.  Highly efficient organic optoelectronic conversion induced by electric double layers in ionic liquids , 2012 .

[72]  A. W. Wills,et al.  Electronic impurity doping in CdSe nanocrystals. , 2012, Nano letters.

[73]  S. Seki,et al.  High-performance organic field-effect transistors with binary ionic liquids , 2009 .

[74]  K. Lyssenko,et al.  Two modifications formed by "sulflower" C16S8 molecules, their study by XRD and optical spectroscopy (Raman, IR, UV-Vis) methods. , 2008, The journal of physical chemistry. A.

[75]  D. Goldhaber-Gordon,et al.  Electrolyte gate-controlled Kondo effect in SrTiO3. , 2011, Physical review letters.

[76]  Y. Lvovsky,et al.  Superconducting systems for MRI-present solutions and new trends , 2005, IEEE Transactions on Applied Superconductivity.

[77]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[78]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[79]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .

[80]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[81]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[82]  Wei Zhang,et al.  Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. , 2010, ACS nano.

[83]  Y. Tokura,et al.  Dirac-fermion-mediated ferromagnetism in a topological insulator , 2012, Nature Physics.

[84]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[85]  N. Reyren,et al.  Electric field control of the LaAlO3/SrTiO3 interface ground state , 2008, Nature.

[86]  Y. Taguchi,et al.  Modulation-doped-semiconductorlike behavior manifested in magnetotransport measurements ofLixZrNCllayered superconductors , 2008 .

[87]  Hagen Klauk,et al.  Carbon‐Based Field‐Effect Transistors for Nanoelectronics , 2009, Advanced materials.

[88]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[89]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[90]  E. Leary,et al.  Single-molecule electrochemical gating in ionic liquids. , 2012, Journal of the American Chemical Society.

[91]  K. Prassides Superconductivity: Interfaces heat up. , 2010, Nature materials.

[92]  A. MacDiarmid,et al.  "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture). , 2001, Angewandte Chemie.

[93]  S. Trasatti The absolute electrode potential: an explanatory note (Recommendations 1986) , 1986 .

[94]  H. Kataura,et al.  Low-Voltage Operation of Ink-Jet-Printed Single-Walled Carbon Nanotube Thin Film Transistors , 2010 .

[95]  H. Dai,et al.  Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. , 2008, Physical review letters.

[96]  M. Chan-Park,et al.  Mobility Enhancement in Carbon Nanotube Transistors by Screening Charge Impurity with Silica Nanoparticles , 2011 .

[97]  L. Faulkner,et al.  Reversible oxidation and rereduction of entire thin films of transition-metal phthalocyanines , 1983 .

[98]  K. Awaga,et al.  Electrochromism and stable n-type doping of highly oriented thin films of Tetrakis(thiadiazole)porphyrazine. , 2007, Angewandte Chemie.

[99]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[100]  P. Dyson,et al.  Dielectric response of imidazolium-based room-temperature ionic liquids. , 2006, The journal of physical chemistry. B.

[101]  A. Fujiwara,et al.  Trap states and transport characteristics in picene thin film field-effect transistor , 2009 .

[102]  Georg S. Duesberg,et al.  Transparent carbon nanotube coatings , 2005 .

[103]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[104]  K. Awaga,et al.  Ionic-Liquid Component Dependence of Carrier Injection and Mobility for Electric-Double-Layer Organic Thin-Film Transistors , 2012 .

[105]  Xi Chen,et al.  Landau quantization of topological surface states in Bi2Se3. , 2010, Physical review letters.

[106]  Arthur F. Hebard,et al.  Electric field gating with ionic liquids , 2007 .

[107]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[108]  K. Awaga,et al.  Electric double layers allow for opaque electrodes in high performance organic optoelectronic devices , 2012 .

[109]  Kazuhito Tsukagoshi,et al.  High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte , 2006 .

[110]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[111]  A. S. Dhoot,et al.  Increased Tc in Electrolyte‐Gated Cuprates , 2010, Advanced materials.

[112]  B. de Boer,et al.  Device characteristics of polymer dual-gate field-effect transistors , 2008 .

[113]  Shimpei Ono,et al.  High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids , 2008 .

[114]  Shriram Ramanathan,et al.  Studies on room-temperature electric-field effect in ionic-liquid gated VO 2 three-terminal devices , 2012 .

[115]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[116]  Janos Veres,et al.  Gate Insulators in Organic Field-Effect Transistors , 2004 .

[117]  Tatsuo Hasegawa,et al.  Organic field-effect transistors using single crystals , 2009, Science and technology of advanced materials.

[118]  Yasumitsu Miyata,et al.  Tunable Carbon Nanotube Thin‐Film Transistors Produced Exclusively via Inkjet Printing , 2010, Advanced materials.

[119]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[120]  Masashi Kawasaki,et al.  Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. , 2010, Journal of the American Chemical Society.

[121]  Hidekazu Shimotani,et al.  Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2 , 2011 .

[122]  T. Arie,et al.  Improvement of transfer characteristic for carbon nanotube field effect transistor with poly crystalline PbZrxTi1-xO3 gate by ionic liquid , 2011 .

[123]  A. Fujiwara,et al.  Characteristics of conjugated hydrocarbon based thin film transistor with ionic liquid gate dielectric , 2011 .

[124]  Hongtao Yuan,et al.  Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. , 2011, Nano letters.

[125]  S. Maekawa,et al.  Transmission of electrical signals by spin-wave interconversion in a magnetic insulator , 2010, Nature.

[126]  H. Takagi,et al.  Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2 , 2012 .

[127]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[128]  Tapash Chakraborty,et al.  Properties of graphene: a theoretical perspective , 2010, 1003.0391.

[129]  Haruhiko Asanuma,et al.  Electrolyte-gated charge accumulation in organic single crystals , 2006 .

[130]  Takeo Kawase,et al.  Very high-mobility organic single-crystal transistors with in-crystal conduction channels , 2007 .

[131]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[132]  Wei Zhang,et al.  Printed Sub‐2 V Gel‐Electrolyte‐Gated Polymer Transistors and Circuits , 2010 .

[133]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[134]  K. Awaga,et al.  Electrochemical and electrochromic properties of octathio[8]circulene thin films in ionic liquids. , 2008, Journal of the American Chemical Society.

[135]  L. Gu,et al.  Electrically Induced Ferromagnetism at Room Temperature in Cobalt-Doped Titanium Dioxide , 2011, Science.

[136]  Yasuhiko Ito,et al.  Room temperature ionic liquids of alkylimidazolium cations and fluoroanions , 2000 .

[137]  S. Maekawa,et al.  Inverse spin-Hall effect induced by spin pumping in metallic system , 2011 .

[138]  Roger Parsons,et al.  The electrical double layer: recent experimental and theoretical developments , 1990 .

[139]  T. Inabe,et al.  Phthalocyanines-versatile components of molecular conductors. , 2004, Chemical reviews.

[140]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[141]  C. Wakai,et al.  How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. , 2005, The journal of physical chemistry. B.

[142]  V. Nenajdenko,et al.  "Sulflower": a new form of carbon sulfide. , 2006, Angewandte Chemie.

[143]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[144]  W. Xie,et al.  Organic Electrical Double Layer Transistors Based on Rubrene Single Crystals: Examining Transport at High Surface Charge Densities above 1013 cm–2 , 2011 .

[145]  S. Baldelli,et al.  Surface chemistry of room-temperature ionic liquids. , 2007, Physical chemistry chemical physics : PCCP.

[146]  K. Awaga,et al.  Crystal structure, spin polarization, solid-state electrochemistry, and high n-type carrier mobility of a paramagnetic semiconductor: vanadyl tetrakis(thiadiazole)porphyrazine. , 2012, Inorganic chemistry.

[147]  S. Fukami,et al.  Electrical control of Curie temperature in cobalt using an ionic liquid film , 2012 .

[148]  Andrzej Lewandowski,et al.  Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies , 2009 .

[149]  Helmuth Berger,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[150]  Shameek Bose,et al.  Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa₂Cu₃O(7-x) films. , 2011, Physical review letters.

[151]  Tobin J Marks,et al.  Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. , 2005, Journal of the American Chemical Society.

[152]  A. Van Itterbeek,et al.  Mesures sur la viscosit de l'oxygne dans un champ magntique et pour des trs basses pressions , 1938 .

[153]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[154]  S. Hüfner,et al.  Direct measurements of the L -gap surface states on the (111) face of noble metals by photoelectron spectroscopy , 2001 .

[155]  Y. Matsumoto,et al.  Organic single crystal transistor characteristics of single-crystal phase pentacene grown by ionic liquid-assisted vacuum deposition , 2012 .

[156]  S. Baldelli Probing electric fields at the ionic liquid-electrode interface using sum frequency generation spectroscopy and electrochemistry. , 2005, The journal of physical chemistry. B.

[157]  Zhongqing Wei,et al.  Reduced graphene oxide molecular sensors. , 2008, Nano letters.

[158]  S. Stankovich,et al.  Graphene-silica composite thin films as transparent conductors. , 2007, Nano letters.

[159]  R. Somoano,et al.  Physics and chemistry of MoS2 intercalation compounds , 1977 .

[160]  Jairton Dupont,et al.  Room temperature dialkylimidazolium ionic liquid-based fuel cells , 2003 .

[161]  K. Awaga,et al.  Dual-gate field-effect transistors of octathio[8]circulene thin-films with ionic liquid and SiO2 gate dielectrics , 2010 .

[162]  Swapan K. Pati,et al.  Large carrier mobilities in octathio[8]circulene crystals: a theoretical study , 2009 .

[163]  H. Kawaji,et al.  A new layer‐structured nitride superconductor. Lithium‐intercalated β‐zirconium nitride chloride, LixZrNCl , 1996 .

[164]  Hongtao Yuan,et al.  Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. , 2010, Journal of the American Chemical Society.

[165]  Hongtao Yuan,et al.  Liquid-gated interface superconductivity on an atomically flat film. , 2010, Nature materials.

[166]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[167]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[168]  Kenneth R. Seddon,et al.  Ionic liquids. Green solvents for the future , 2000 .

[169]  A. D. Graves The electrical double layer in molten salts , 1970 .

[170]  Janos Veres,et al.  Low‐k Insulators as the Choice of Dielectrics in Organic Field‐Effect Transistors , 2003 .

[171]  M. Watanabe,et al.  Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. , 2010, Physical chemistry chemical physics : PCCP.

[172]  John M. Slattery,et al.  The dielectric response of room-temperature ionic liquids: effect of cation variation. , 2007, The journal of physical chemistry. B.

[173]  Y. Maniwa,et al.  Superconductivity in alkali-metal-doped picene , 2010, Nature.

[174]  K. Awaga,et al.  Molecular, crystal, and thin-film structures of octathio[8]circulene: release of antiaromatic molecular distortion and lamellar structure of self-assembling thin films. , 2008, Chemistry.

[175]  J. Lehn,et al.  Single-molecule transport in three-terminal devices , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[176]  T. Ouisse,et al.  Ultimately thin double-gate SOI MOSFETs , 2003 .

[177]  M. Martínez‐Díaz,et al.  Lighting porphyrins and phthalocyanines for molecular photovoltaics. , 2010, Chemical communications.

[178]  B. Tilak,et al.  The Structure of the Electrical Double Layer at the Metal-Solution Interface , 1965 .

[179]  I. You,et al.  Device Characteristics of Pentacene Dual-Gate Organic Thin-Film Transistor , 2007 .

[180]  A. Fujiwara,et al.  Air-assisted high-performance field-effect transistor with thin films of picene. , 2008, Journal of the American Chemical Society.

[181]  A. Morpurgo,et al.  Current saturation and Coulomb interactions in organic single-crystal transistors , 2007, 0710.2845.

[182]  K. Awaga,et al.  Electrochemical structural transformation and reversible doping/dedoping of lithium phthalocyanine thin films. , 2009, Chemical communications.

[183]  S. Seki,et al.  Electronic functionalization of solid-to-liquid interfaces between organic semiconductors and ionic liquids: Realization of very high performance organic single-crystal transistors , 2008 .

[184]  Hansen Absolute half-cell potential: A simple direct measurement. , 1987, Physical review. A, General physics.

[185]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[186]  M. Ono,et al.  Japan's superconducting Maglev train , 2002 .

[187]  Jinghong Li,et al.  Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. , 2009, Journal of the American Chemical Society.

[188]  Dermot Diamond,et al.  Electrochemical transistors with ionic liquids for enzymatic sensing. , 2010, Chemical communications.

[189]  Xiaoming Tao,et al.  A Transparent, Flexible, Low‐Temperature, and Solution‐Processible Graphene Composite Electrode , 2010 .

[190]  C. Frisbie,et al.  Dependence of Conductivity on Charge Density and Electrochemical Potential in Polymer Semiconductors Gated with Ionic Liquids , 2012 .

[191]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[192]  H. Takagi,et al.  Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi 2 Se 3 , 2010, 1003.0100.

[193]  Thomas N. Jackson,et al.  Temperature-independent transport in high-mobility pentacene transistors , 1998 .

[194]  Kazuhiko Seki,et al.  Bottom contact ambipolar organic thin film transistor and organic inverter based on C60/pentacene heterostructure , 2006 .

[195]  T. Tsukada,et al.  Back-bias effect on the current-voltage characteristics of amorphous silicon thin-film transistors , 1992 .

[196]  K. Akaike,et al.  Characteristics of Single Crystal Field-Effect Transistors with a New Type of Aromatic Hydrocarbon, Picene , 2012 .

[197]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[198]  Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors , 2004, cond-mat/0407293.

[199]  J. Takeya,et al.  Low-voltage operation of n-type organic field-effect transistors with ionic liquid , 2009 .

[200]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[201]  Jensen,et al.  Spin Splitting of an Au(111) Surface State Band Observed with Angle Resolved Photoelectron Spectroscopy. , 1996, Physical review letters.

[202]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[203]  Hiroshi Matsui,et al.  High performance dye-sensitized solar cells using ionic liquids as their electrolytes , 2004 .

[204]  Abhishek P. Kulkarni,et al.  Electron Transport Materials for Organic Light-Emitting Diodes , 2004 .

[205]  Superconductivity: 100th Anniversary of Its Discovery and Its Future , 2012 .

[206]  T. Jackson,et al.  Stacked pentacene layer organic thin-film transistors with improved characteristics , 1997, IEEE Electron Device Letters.

[207]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[208]  J. H. Becker,et al.  Dependence of the Superconducting Transition Temperature on Carrier Concentration in Semiconducting SrTi O 3 , 1965 .

[209]  Jiyoul Lee,et al.  High carrier densities achieved at low voltages in Ambipolar PbSe nanocrystal thin-film transistors. , 2009, Nano letters.

[210]  Dermot Diamond,et al.  Organic electrochemical transistor incorporating anionogel as solid state electrolyte for lactate sensing , 2012 .

[211]  Jiyoul Lee,et al.  Ion gel gated polymer thin-film transistors. , 2007, Journal of the American Chemical Society.

[212]  K. Awaga,et al.  A complementary organic inverter of porphyrazine thin films: low-voltage operation using ionic liquid gate dielectrics. , 2011, Chemical communications.

[213]  Ute Zschieschang,et al.  High-mobility polymer gate dielectric pentacene thin film transistors , 2002 .

[214]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[215]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[216]  A. Hebard,et al.  Experimental considerations in the quest for a thin-film superconducting field-effect transistor , 1987 .

[217]  D. Fleetwood,et al.  Non-volatile memory device based on mobile protons in SiO2 thin films , 1997, Nature.

[218]  K. Awaga,et al.  Photoconductivity and FET performance of an n-type porphyrazine semiconductor, tetrakis(thiadiazole)porphyrazine , 2011 .