Spectral Extremal Results with Forbidding Linear Forests
暂无分享,去创建一个
[1] Peter Allen,et al. Maximum Planar Subgraphs in Dense Graphs , 2013, Electron. J. Comb..
[2] Xiao-Dong Zhang,et al. The Turán number of disjoint copies of paths , 2017, Discret. Math..
[3] Hong Liu,et al. On the Turán Number of Forests , 2012, Electron. J. Comb..
[4] Yuan Hong,et al. A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.
[5] V. Nikiforov. Bounds on graph eigenvalues I , 2006, math/0602027.
[6] NEAL BUSHAW,et al. Turán Numbers of Multiple Paths and Equibipartite Forests , 2011, Combinatorics, Probability and Computing.
[7] L. Lovász,et al. On the eigenvalues of trees , 1973 .
[8] Ronald Brown,et al. Graphs of Morphisms of Graphs , 2008, Electron. J. Comb..
[9] B. Wang,et al. ON THE SPECTRAL RADII OF GRAPHS WITHOUT GIVEN CYCLES , 2012 .
[10] Vladimir Nikiforov,et al. Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.
[11] Vladimir Nikiforov,et al. The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.
[12] Shmuel Friedland,et al. On the First Eigenvalue of Bipartite Graphs , 2008, Electron. J. Comb..
[13] Vladimir Nikiforov,et al. A spectral condition for odd cycles in graphs , 2007, 0707.4499.
[14] Vladimir Nikiforov,et al. Bounds on graph eigenvalues II , 2006, math/0612461.
[15] B. Wang,et al. Proof of a conjecture on the spectral radius of C4-free graphs , 2012 .
[16] Vladimir Nikiforov,et al. A Spectral Erdős–Stone–Bollobás Theorem , 2007, Combinatorics, Probability and Computing.
[17] P. Erdos,et al. On maximal paths and circuits of graphs , 1959 .
[18] Mark N. Ellingham,et al. The Spectral Radius of Graphs on Surfaces , 2000, J. Comb. Theory, Ser. B.
[19] J. A. Bondy,et al. Graph Theory , 2008, Graduate Texts in Mathematics.
[20] V. Nikiforov. The maximum spectral radius of C4-free graphs of given order and size , 2007, 0712.1301.
[21] Odile Favaron,et al. Some eigenvalue properties in graphs (conjectures of Graffiti - II) , 1993, Discret. Math..
[22] Michael Tait,et al. Three conjectures in extremal spectral graph theory , 2016, J. Comb. Theory, Ser. B.
[23] P. Erdös. On an extremal problem in graph theory , 1970 .
[24] V. Nikiforov. A contribution to the Zarankiewicz problem , 2009, 0903.5350.
[25] Victor Campos,et al. A Proof for a Conjecture of Gorgol , 2015, Electron. Notes Discret. Math..