Spectral Extremal Results with Forbidding Linear Forests

The Turán type extremal problems ask to maximize the number of edges over all graphs which do not contain fixed subgraphs. Similarly, their spectral counterparts ask to maximize spectral radius of all graphs which do not contain fixed subgraphs. In this paper, we determine the maximum spectral radius of all graphs without a linear forest as a subgraph and all the extremal graphs. In addition, the maximum number of edges and spectral radius of all bipartite graphs without $$k\cdot P_3$$k·P3 as a subgraph are obtained and all the extremal graphs are also determined. Moreover, some relations between Turán type extremal problems and their spectral counterparts are discussed.

[1]  Peter Allen,et al.  Maximum Planar Subgraphs in Dense Graphs , 2013, Electron. J. Comb..

[2]  Xiao-Dong Zhang,et al.  The Turán number of disjoint copies of paths , 2017, Discret. Math..

[3]  Hong Liu,et al.  On the Turán Number of Forests , 2012, Electron. J. Comb..

[4]  Yuan Hong,et al.  A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.

[5]  V. Nikiforov Bounds on graph eigenvalues I , 2006, math/0602027.

[6]  NEAL BUSHAW,et al.  Turán Numbers of Multiple Paths and Equibipartite Forests , 2011, Combinatorics, Probability and Computing.

[7]  L. Lovász,et al.  On the eigenvalues of trees , 1973 .

[8]  Ronald Brown,et al.  Graphs of Morphisms of Graphs , 2008, Electron. J. Comb..

[9]  B. Wang,et al.  ON THE SPECTRAL RADII OF GRAPHS WITHOUT GIVEN CYCLES , 2012 .

[10]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[11]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.

[12]  Shmuel Friedland,et al.  On the First Eigenvalue of Bipartite Graphs , 2008, Electron. J. Comb..

[13]  Vladimir Nikiforov,et al.  A spectral condition for odd cycles in graphs , 2007, 0707.4499.

[14]  Vladimir Nikiforov,et al.  Bounds on graph eigenvalues II , 2006, math/0612461.

[15]  B. Wang,et al.  Proof of a conjecture on the spectral radius of C4-free graphs , 2012 .

[16]  Vladimir Nikiforov,et al.  A Spectral Erdős–Stone–Bollobás Theorem , 2007, Combinatorics, Probability and Computing.

[17]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[18]  Mark N. Ellingham,et al.  The Spectral Radius of Graphs on Surfaces , 2000, J. Comb. Theory, Ser. B.

[19]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[20]  V. Nikiforov The maximum spectral radius of C4-free graphs of given order and size , 2007, 0712.1301.

[21]  Odile Favaron,et al.  Some eigenvalue properties in graphs (conjectures of Graffiti - II) , 1993, Discret. Math..

[22]  Michael Tait,et al.  Three conjectures in extremal spectral graph theory , 2016, J. Comb. Theory, Ser. B.

[23]  P. Erdös On an extremal problem in graph theory , 1970 .

[24]  V. Nikiforov A contribution to the Zarankiewicz problem , 2009, 0903.5350.

[25]  Victor Campos,et al.  A Proof for a Conjecture of Gorgol , 2015, Electron. Notes Discret. Math..