High-field ESR measurements of S=3/2 honeycomb lattice antiferromagnet Bi3Mn4O12(NO3)

High-field ESR measurements of the novel Mn substance Bi3Mn4O12(NO3), which is a model substance of S=3/2 honeycomb lattice antiferromagnet, have been performed using the pulsed magnetic field up to 16 T. No resonance shift and the gapless behavior are observed in the temperature dependence measurements. Although, very strong antiferromagnetic interactions are expected from the Weiss temperature, there is no evidence of the long-range ordering down to 1.9 K from the magnetic susceptibility, the specific heat and the ESR measurements. Therefore, the existence of the frustration effect in Bi3Mn4O12(NO3) is strongly suggested in spite of the honeycomb lattice structure.

[1]  H. Yoshida,et al.  Vesignieite BaCu3V2O8(OH)2 as a Candidate Spin-1/2 Kagome Antiferromagnet , 2009, 0901.2237.

[2]  Y. Maeno,et al.  High-field electron spin resonance in the two-dimensional triangular-lattice antiferromagnet NiGa 2 S 4 , 2008, 0807.4438.

[3]  S. Ishihara,et al.  Doubly degenerate orbital system in honeycomb lattice: Implication of orbital state in layered iron oxide , 2008, 0804.0843.

[4]  K. Takano Spin-gap phase of a quantum spin system on a honeycomb lattice , 2006, cond-mat/0609446.

[5]  D. Nocera,et al.  A structurally perfect S = (1/2) kagomé antiferromagnet. , 2005, Journal of the American Chemical Society.

[6]  Y. Maeno,et al.  Spin Disorder on a Triangular Lattice , 2005, Science.

[7]  M. Kriener,et al.  Structural and magnetic properties of the new low-dimensional spin magnet InCu2/3V1/3O3 , 2005 .

[8]  J. González-Rodríguez,et al.  Electron paramagnetic resonance in MnO2 powders and comparative estimation of electric characteristics of power sources based on them in the MnO2–Zn system , 2003 .

[9]  Z. Hiroi,et al.  High-field ESR study of kagome-like substance Cu3V2O7(OH)2·2H2O , 2001 .

[10]  M. Isobe,et al.  Transport properties and magnetism of a helically Hund-coupled conductor:β−MnO2 , 2000 .

[11]  H. Ohta,et al.  Millimeter and Submillimeter Wave ESR System: Using 30 T Pulsed Magnetic Field , 1998 .

[12]  H. Kikuchi,et al.  High field ESR of Kagome antiferromagnets SrCrxGa12-xO19 , 1996 .

[13]  H. Kikuchi,et al.  EPR of the Kagome antiferromagnet SrCr8Ga4O19 , 1994 .

[14]  M. Motokawa,et al.  Submillimeter EPR of Co:Rb2MgF4 and anomalous g-values , 1990, International Conference on Infrared and Millimeter Waves.

[15]  H. Kikuchi,et al.  Z2 Vortex-Induced Broadening of the EPR Linewidth in the Two-Dimensional Triangular Lattice Antiferromagnets, HCrO2 and LiCrO2 , 1988 .

[16]  T. Morita,et al.  The ground states of the classical heisenberg and planar models on the triangular and plane hexagonal lattices , 1986 .

[17]  Y. Hamaguchi,et al.  Determination of the Exchange Integrals in β-MnO 2 , 1971 .

[18]  H. Andresen Hyperfine Structure and g‐Tensor Anisotropy of the Paramagnetic Resonances of Manganese in TiO2 , 1961 .