Music Analysis and Point-Set Compression

COSIATEC, SIATECCompress and Forth’s algorithm are point-set compression algorithms developed for discovering repeated patterns in music, such as themes and motives that would be of interest to a music analyst. To investigate their effectiveness and versatility, these algorithms were evaluated on three analytical tasks that depend on the discovery of repeated patterns: classifying folk song melodies into tune families, discovering themes and sections in polyphonic music, and discovering subject and countersubject entries in fugues. Each algorithm computes a compressed encoding of a point-set representation of a musical object in the form of a list of compact patterns, each pattern being given with a set of vectors indicating its occurrences. However, the algorithms adopt different strategies in their attempts to discover encodings that maximize compression. The best-performing algorithm on the folk-song classification task was COSIATEC, with a success rate of 84%. On the other tasks, variants of SIATECCom...

[1]  Tillman Weyde,et al.  An approach to melodic segmentation and classification based on filtering with the Haar-wavelet , 2013 .

[2]  Olivier Lartillot,et al.  Multi-Dimensional motivic pattern extraction founded on adaptive redundancy filtering , 2005 .

[3]  Darrell Conklin,et al.  Fusion functions for multiple viewpoints , 2013 .

[4]  Geraint A. Wiggins,et al.  Pattern Induction and matching in polyphonic music and other multidimensional datasets , 2001 .

[5]  Ian Knopke,et al.  A System for Identifying Common Melodic Phrases in the Masses of Palestrina , 2009 .

[6]  Ronald de Wolf,et al.  Algorithmic Clustering of Music Based on String Compression , 2004, Computer Music Journal.

[7]  Mathieu Giraud,et al.  Subject and Counter-Subject Detection for Analysis of the Well-Tempered Clavier Fugues , 2012, CMMR.

[8]  N. Ruwet Methodes d'analyse en musicologie , 1966 .

[9]  A. Schoenberg,et al.  Fundamentals of Musical Composition , 1973 .

[10]  Darrell Conklin,et al.  Representation and Discovery of Multiple Viewpoint Patterns , 2001, ICMC.

[11]  H. Barlow,et al.  A dictionary of musical themes , 1975 .

[12]  Robin C. Laney,et al.  Modeling pattern importance in Chopin's mazurkas , 2011 .

[13]  William Renwick,et al.  J. S . Bach's: Well-Tempered Clavier In-Depth Analysis and Interpretation , 1993 .

[14]  Ming Li,et al.  Genre Classification via an LZ78-Based String Kernel , 2005, ISMIR.

[15]  Anja Volk,et al.  Melodic similarity among folk songs: An annotation study on similarity-based categorization in music , 2012 .

[16]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[17]  David Meredith,et al.  The ps13 pitch spelling algorithm , 2006 .

[18]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[19]  Emilios Cambouropoulos,et al.  Towards a General Computational Theory of Musical Structure , 1998 .

[20]  Gerhard Widmer,et al.  SIARCT-CFP: Improving Precision and the Discovery of Inexact Musical Patterns in Point-Set Representations , 2013, ISMIR.

[21]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[22]  Bernard Manderick,et al.  String Methods for Folk Tune Genre Classification , 2012, ISMIR.

[23]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[24]  Emilios Cambouropoulos,et al.  Musical Parallelism and Melodic Segmentation: : A Computational Approach , 2006 .

[25]  F. Wiering,et al.  A Comparison between Global and Local Features for Computational Classification of Folk Song Melodies , 2013 .

[26]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[27]  Arbee L. P. Chen,et al.  Discovering nontrivial repeating patterns in music data , 2001, IEEE Trans. Multim..

[28]  Robin C. Laney,et al.  A Comparative Evaluation of Algorithms for Discovering Translational Patterns in Baroque Keyboard Works , 2010, ISMIR.

[29]  David Meredith COSIATEC and SIATECCompress: Pattern discovery by geometric compression , 2013 .

[30]  Geraint A. Wiggins,et al.  Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music , 2002 .

[31]  M. Li,et al.  Melody Classification using a Similarity Metric based on Kolmogorov Complexity , 2004 .

[32]  W. Bas de Haas,et al.  Finding Repeated Patterns in Music: State of Knowledge, Challenges, Perspectives , 2013, CMMR.

[33]  Pierre-Yves Rolland,et al.  Discovery of Patterns in Musical Sequences , 1999 .

[34]  Mathieu Bergeron,et al.  Feature Set Patterns in Music , 2008, Computer Music Journal.

[35]  J. Nattiez Fondements d'une sémiologie de la musique , 1976 .

[36]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[37]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[38]  David Meredith Point-set algorithms for pattern discovery and pattern matching in music , 2006, Content-Based Retrieval.

[39]  Darrell Conklin,et al.  Segmental Pattern Discovery in Music , 2006, INFORMS J. Comput..