Andreev Reflections in NbN/Graphene Junctions under Large Magnetic Fields.

Hybrid superconductor/graphene (SC/g) junctions are excellent candidates for investigating correlations between Cooper pairs and quantum Hall (QH) edge modes. Experimental studies are challenging as Andreev reflections are extremely sensitive to junction disorder, and high magnetic fields are required to form QH edge states. We fabricated low-resistance SC/g interfaces, composed of graphene edge contacted with NbN with a barrier strength of Z ≈ 0.4, that remain superconducting under magnetic fields larger than 18 T. We establish the role of graphene's Dirac band structure on zero-field Andreev reflections and demonstrate dynamic tunability of the Andreev reflection spectrum by moving the boundary between specular and retro Andreev reflections with parallel magnetic fields. Through the application of perpendicular magnetic fields, we observe an oscillatory suppression of the 2-probe conductance in the ν = 4 Landau level attributed to the reduced efficiency of Andreev processes at the NbN/g interface, consistent with theoretical predictions.

[1]  J. Jain,et al.  Inter-Landau-level Andreev Reflection at the Dirac Point in a Graphene Quantum Hall State Coupled to a NbSe_{2} Superconductor. , 2018, Physical review letters.

[2]  S. Mukerjee,et al.  Enhanced specular Andreev reflection in bilayer graphene , 2018, Physical Review B.

[3]  Takashi Taniguchi,et al.  Inducing superconducting correlation in quantum Hall edge states , 2016, Nature Physics.

[4]  L. Molenkamp,et al.  Gapless Andreev bound states in the quantum spin Hall insulator HgTe. , 2016, Nature nanotechnology.

[5]  A. Das,et al.  Andreev reflection near the Dirac point at the graphene-NbSe2 junction , 2016, 1606.02559.

[6]  K. Efetov,et al.  Crossover from retro to specular Andreev reflections in bilayer graphene , 2016, 1605.04254.

[7]  P. Kim,et al.  Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2 , 2015, Nature Physics.

[8]  I. V. Borzenets,et al.  Supercurrent in the quantum Hall regime , 2015, Science.

[9]  L. Molenkamp,et al.  4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions , 2015, Nature Communications.

[10]  F. Guinea,et al.  Majorana Zero Modes in Graphene , 2015, 1506.04961.

[11]  T M Klapwijk,et al.  Ballistic Josephson junctions in edge-contacted graphene. , 2015, Nature nanotechnology.

[12]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[13]  T. Schäpers,et al.  Crossover from Josephson effect to single interface Andreev reflection in asymmetric superconductor/nanowire junctions. , 2014, Nano letters.

[14]  L. Molenkamp,et al.  Induced superconductivity in the quantum spin Hall edge , 2013, Nature Physics.

[15]  Shinhyun Choi,et al.  Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state , 2013, Nature.

[16]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[17]  K. Shepard,et al.  Evidence for a spin phase transition at charge neutrality in bilayer graphene , 2012, Nature Physics.

[18]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[19]  Sanjeev Kumar,et al.  Phase Diagram and Upper Critical Field of Homogeneously Disordered Epitaxial 3-Dimensional NbN Films , 2010, 1005.1628.

[20]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[21]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[22]  R. Gonnelli,et al.  Probing multiband superconductivity by point-contact spectroscopy , 2009, 0912.4858.

[23]  S. Chockalingam,et al.  Superconducting properties and Hall effect of epitaxial NbN thin films , 2008, 0804.2945.

[24]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[25]  N. Chtchelkatchev,et al.  Conductance Oscillations With Magnetic Field Of A Two-Dimensional Electron Gas-Superconductor Junction , 2006, cond-mat/0612673.

[26]  These authors contributed equally to this work. , 2007 .

[27]  C. Beenakker Specular Andreev reflection in graphene. , 2006, Physical review letters.

[28]  G. Borghs,et al.  Andreev reflection at high magnetic fields: evidence for electron and hole transport in edge states. , 2004, Physical review letters.

[29]  Hoppe,et al.  Andreev reflection in strong magnetic fields , 1999, Physical review letters.

[30]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .