A multiresolution remeshed Vortex-In-Cell algorithm using patches

We present a novel multiresolution Vortex-In-Cell algorithm using patches of varying resolution. The Poisson equation relating the fluid vorticity and velocity is solved using Fast Fourier Transforms subject to free space boundary conditions. Solid boundaries are implemented using the semi-implicit formulation of Brinkman penalization and we show that the penalization can be carried out as a simple interpolation. We validate the implementation against the analytic solution to the Perlman test case and by free-space simulations of the onset flow around fixed and rotating circular cylinders and bluff body flows around bridge sections.

[1]  Charles K. Birdsall,et al.  Clouds-in-Clouds, Clouds-in-Cells Physics for Many-Body Plasma Simulation , 1997 .

[2]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[3]  Diego Rossinelli,et al.  GPU accelerated simulations of bluff body flows using vortex particle methods , 2010, J. Comput. Phys..

[4]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[5]  J. Christiansen Numerical Simulation of Hydrodynamics by the Method of Point Vortices , 1997 .

[6]  J. Wu,et al.  Aerodynamic force and moment in steady and time-dependent viscous flows , 1980 .

[7]  Michael Bergdorf,et al.  Multilevel Adaptive Particle Methods for Convection-Diffusion Equations , 2005, Multiscale Model. Simul..

[8]  Nicholas K.-R. Kevlahan,et al.  Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization , 2001 .

[9]  Marjorie Perlman,et al.  Accuracy of vortex methods , 1983 .

[10]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[11]  Mathieu Coquerelle,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com Journal of Computational Physics xxx (2008) xxx–xxx , 2022 .

[12]  M. Chou Numerical study of vortex shedding from a rotating cylinder immersed in a uniform flow field , 2000 .

[13]  Allan Larsen,et al.  Discrete vortex simulation of flow around five generic bridge deck sections , 1998 .

[14]  Nikolaus A. Adams,et al.  A windowing method for periodic inflow/outflow boundary treatment of non-periodic flows , 2005 .

[15]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[16]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[17]  Alessandro Curioni,et al.  Billion vortex particle direct numerical simulations of aircraft wakes , 2008 .

[18]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[19]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[20]  Grégoire Winckelmans,et al.  Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations , 2008, J. Comput. Phys..

[21]  G. Barton Elements of Green's Functions and Propagation: Potentials, Diffusion, and Waves , 1989 .

[22]  Grégoire Winckelmans,et al.  Vortex methods and their application to trailing wake vortex simulations , 2005 .

[23]  Peter Stansby,et al.  Simulation of vortex shedding including blockage by the random-vortex and other methods , 1993 .

[24]  R. Hockney The potential calculation and some applications , 1970 .

[25]  P. Koumoutsakos,et al.  High-resolution simulations of the flow around an impulsively started cylinder using vortex methods , 1995, Journal of Fluid Mechanics.

[26]  Guido Morgenthal,et al.  An immersed interface method for the vortex-in-cell algorithm , 2007 .

[27]  Petros Koumoutsakos,et al.  A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions , 2010, J. Comput. Phys..

[28]  A. Larsen,et al.  Two dimensional discrete vortex method for application to bluff body aerodynamics , 1997 .

[29]  Ivo F. Sbalzarini,et al.  PPM - A highly efficient parallel particle-mesh library for the simulation of continuum systems , 2006, J. Comput. Phys..

[30]  M. EL OSSMANI,et al.  Efficiency of Multiscale Hybrid Grid-Particle Vortex Methods , 2010, Multiscale Model. Simul..

[31]  Georges-Henri Cottet,et al.  Blending Finite-Difference and Vortex Methods for Incompressible Flow Computations , 2000, SIAM J. Sci. Comput..

[32]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[33]  Flavio Noca,et al.  Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives , 1997 .

[34]  Petros Koumoutsakos,et al.  Vortex Methods with Spatially Varying Cores , 2000 .

[35]  J. Monaghan,et al.  Extrapolating B splines for interpolation , 1985 .