Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon.

Thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge(23)Sb(7)S(70), to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10(5) quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.

[1]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  E. A. J. Marcatili,et al.  Velocity-matching techniques for integrated optic traveling wave switch/modulators , 1984 .

[3]  Bandwidth–length trade-off figures of merit for electro-optic traveling wave modulators , 2013 .

[4]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[5]  Masaya Notomi,et al.  Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. , 2014, Optics express.

[6]  R. L. Jungerman,et al.  Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers , 1988 .

[7]  Wolfgang Freude,et al.  40 GBd 16QAM Signaling at 160 Gb/s in a Silicon-Organic Hybrid Modulator , 2015, Journal of Lightwave Technology.

[8]  Sasan Fathpour,et al.  Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates. , 2014, Optics letters.

[9]  J. Veselka,et al.  Proton exchange for high‐index waveguides in LiNbO3 , 1982 .

[10]  Guo-Qiang Lo,et al.  50-Gb/s silicon optical modulator with traveling-wave electrodes. , 2013, Optics express.

[11]  M. Wood,et al.  12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes. , 2013, Optics express.

[12]  Andrei Vorobiev,et al.  Effect of interface roughness on acoustic loss in tunable thin film bulk acoustic wave resonators , 2011 .

[13]  Periklis Petropoulos,et al.  High Performance Mach–Zehnder-Based Silicon Optical Modulators , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Ke Li,et al.  Recent breakthroughs in carrier depletion based silicon optical modulators , 2014 .

[15]  O. Mitomi,et al.  Millimeter-wave Ti:LiNbO/sub 3/ optical modulators , 1998 .

[16]  Jonathan Nagy,et al.  Highly linear ring modulator from hybrid silicon and lithium niobate. , 2015, Optics express.

[17]  S. Fathpour,et al.  Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching , 2015 .

[18]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[19]  R. A. Becker,et al.  Characterization Of Frequency Dispersion In Ti-Indiffused Lithium Niobate Optical Devices , 1988, Other Conferences.

[20]  Jinzhong Yu,et al.  High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. , 2013, Optics express.

[21]  R. Baets,et al.  Compact efficient broadband grating coupler for silicon-on-insulator waveguides. , 2004, Optics letters.

[22]  Sasan Fathpour,et al.  Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics , 2014 .

[23]  S. Fathpour,et al.  Silicon on lithium niobate: A hybrid electro-optical platform for near- and mid-infrared photonics , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[24]  Sasan Fathpour,et al.  Heterogeneous lithium niobate photonics on silicon substrates. , 2013, Optics express.

[25]  Vladimir Stojanovic,et al.  Silicon photonics for compact, energy-efficient interconnects [Invited] , 2007, Journal of Optical Networking.

[26]  William K. Burns,et al.  Optical waveguide parabolic coupling horns , 1977 .

[27]  S. Fathpour,et al.  Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum. , 2013, Optics express.

[28]  P. C. Willis,et al.  Characterization of frequency dispersion in Ti‐indiffused lithium niobate optical devices , 1987 .

[29]  W. Steier,et al.  Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices. , 2011, Optics letters.

[30]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[31]  P. Günter,et al.  Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding , 2004 .

[32]  Jose A Ibarra Fuste,et al.  Bandwidth-length trade-off figures of merit for electro-optic traveling wave modulators. , 2013, Optics Letters.

[33]  Theodor Tamir,et al.  Analysis and Design of Grating Couplers , 1980 .

[34]  Sasan Fathpour,et al.  Emerging heterogeneous integrated photonic platforms on silicon , 2015 .