Genetic mapping and regional association analysis revealed a CYTOKININ RESPONSE FACTOR 10 gene controlling flowering time in Brassica napus L.

[1]  H. Raman,et al.  De novo design of future rapeseed crops: Challenges and opportunities , 2022, The Crop Journal.

[2]  Sumei Chen,et al.  An ERF transcription factor and a FLK homologue jointly modulate photoperiodic flowering in chrysanthemum. , 2022, Plant, cell & environment.

[3]  G. King,et al.  BRAD V3.0: an upgraded Brassicaceae database , 2021, Nucleic Acids Res..

[4]  Xiaowu Wang,et al.  The APETALA2 homolog CaFFN regulates flowering time in pepper , 2021, Horticulture Research.

[5]  B. Yi,et al.  QTL Mapping and Diurnal Transcriptome Analysis Identify Candidate Genes Regulating Brassica napus Flowering Time , 2021, International journal of molecular sciences.

[6]  Diqiu Yu,et al.  ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis. , 2021, Journal of integrative plant biology.

[7]  Jin Fu,et al.  Characteristics and drivers of daily nitrogen and phosphorus losses from rice-rapeseed rotation systems in the middle reaches of the Yangtze River , 2021, Environmental Science and Pollution Research.

[8]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[9]  R. Snowdon,et al.  A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape , 2021, Theoretical and Applied Genetics.

[10]  Zetao Bai,et al.  Mutation of the PHYTOENE DESATURASE 3 gene causes yellowish-white petals in Brassica napus , 2021 .

[11]  Zhen Huang,et al.  Quantitative Trait Locus Mapping and Identification of Candidate Genes Controlling Flowering Time in Brassica napus L. , 2021, Frontiers in Plant Science.

[12]  Shan-Shan Dong,et al.  LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files , 2020, bioRxiv.

[13]  A. Xiong,et al.  Advances in AP2/ERF super-family transcription factors in plant , 2020, Critical reviews in biotechnology.

[14]  H. Raman,et al.  GWAS hints at pleiotropic roles for FLOWERING LOCUS T in flowering time and yield-related traits in canola , 2019, BMC Genomics.

[15]  T. Marschall,et al.  SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome , 2019, PloS one.

[16]  A. Paterson,et al.  Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L , 2019, BMC Genomics.

[17]  Hongkun Zheng,et al.  Whole-Genome Resequencing of a Worldwide Collection of Rapeseed Accessions Reveals the Genetic Basis of Ecotype Divergence. , 2019, Molecular plant.

[18]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[19]  Maoteng Li,et al.  Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. , 2018, Plant science : an international journal of experimental plant biology.

[20]  Jingyin Yu,et al.  Genome-Wide Identification of Flowering-Time Genes in Brassica Species and Reveals a Correlation between Selective Pressure and Expression Patterns of Vernalization-Pathway Genes in Brassica napus , 2018, International journal of molecular sciences.

[21]  Shuangxia Jin,et al.  Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton , 2018, Plant Molecular Biology.

[22]  I. Grosse,et al.  Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). , 2018, Plant, cell & environment.

[23]  H. Rahman,et al.  Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus , 2018, PloS one.

[24]  J. Chandler Class VIIIb APETALA2 Ethylene Response Factors in Plant Development. , 2017, Trends in plant science.

[25]  Kai Zhang,et al.  qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms , 2017, Nucleic Acids Res..

[26]  J. Zou,et al.  Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example , 2017, Theoretical and Applied Genetics.

[27]  T. Zhao,et al.  Network approaches for plant phylogenomic synteny analysis. , 2017, Current opinion in plant biology.

[28]  Jessica A. Weber,et al.  The Sentieon Genomics Tools – A fast and accurate solution to variant calling from next-generation sequence data , 2017, bioRxiv.

[29]  R. Reinhardt,et al.  Post-polyploidisation morphotype diversification associates with gene copy number variation , 2017, Scientific Reports.

[30]  Alain. P. Bonjean,et al.  Rapeseed in China , 2016 .

[31]  H Raman,et al.  Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. , 2016, Plant, cell & environment.

[32]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[33]  Kaining Hu,et al.  Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.) , 2015, DNA research : an international journal for rapid publication of reports on genes and genomes.

[34]  R. Snowdon,et al.  Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus , 2015, BMC Genomics.

[35]  C. Jung,et al.  Flowering time regulation in crops—what did we learn from Arabidopsis? , 2015, Current opinion in biotechnology.

[36]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[37]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[38]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[39]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[40]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[41]  Corinne Da Silva,et al.  Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome , 2014, Science.

[42]  C. Beeck,et al.  Quantitative Trait Loci for Thermal Time to Flowering and Photoperiod Responsiveness Discovered in Summer Annual-Type Brassica napus L , 2014, PloS one.

[43]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[44]  Zhonghua Zhang,et al.  QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber , 2014, Theoretical and Applied Genetics.

[45]  J. Batley,et al.  SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. , 2013, Plant biotechnology journal.

[46]  U. Pathre,et al.  SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth , 2013, Journal of experimental botany.

[47]  R. Terauchi,et al.  QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. , 2013, The Plant journal : for cell and molecular biology.

[48]  O. Nilsson,et al.  The multifaceted roles of FLOWERING LOCUS T in plant development. , 2012, Plant, cell & environment.

[49]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[50]  K. Shinozaki,et al.  AP2/ERF family transcription factors in plant abiotic stress responses. , 2012, Biochimica et biophysica acta.

[51]  Mukesh Jain,et al.  NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data , 2012, PloS one.

[52]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[53]  N. Wratten,et al.  Genetic and physical mapping of flowering time loci in canola (Brassica napus L.) , 2012, Theoretical and Applied Genetics.

[54]  C. Jung,et al.  Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a , 2011, Journal of experimental botany.

[55]  J. Zou,et al.  A Dynamic and Complex Network Regulates the Heterosis of Yield-Correlated Traits in Rapeseed (Brassica napus L.) , 2011, PloS one.

[56]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[57]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[58]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[59]  I. Bancroft,et al.  Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus , 2009, Genetics.

[60]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[61]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[62]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[63]  Xiangfeng Wang,et al.  A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. , 2008, Molecular plant.

[64]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[65]  Edward S. Buckler,et al.  TASSEL: software for association mapping of complex traits in diverse samples , 2007, Bioinform..

[66]  M. Nordborg,et al.  Role of FRIGIDA and FLOWERING LOCUS C in Determining Variation in Flowering Time of Arabidopsis1[w] , 2005, Plant Physiology.

[67]  Shelley Hepworth,et al.  CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis , 2004, Development.

[68]  P. Dixon VEGAN, a package of R functions for community ecology , 2003 .

[69]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.