Interference Detection for Subdivision Surfaces

Accurate and robust interference detection and ray‐tracing of subdivision surfaces requires safe linear approximations. Approximation of the limit surface by the subdivided control polyhedron can be both inaccurate and, due to the exponential growth of the number of facets, costly.

[1]  Dinesh Manocha,et al.  Fast Proximity Queries with Swept Sphere Volumes , 1999 .

[2]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[3]  Eitan Grinspun,et al.  Normal bounds for subdivision-surface interference detection , 2001, Proceedings Visualization, 2001. VIS '01..

[4]  Jörg Peters,et al.  Optimized refinable enclosures of multivariate polynomial pieces , 2001, Comput. Aided Geom. Des..

[5]  Leif Kobbelt,et al.  Tight bounding volumes for subdivision surfaces , 1998, Proceedings Pacific Graphics '98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208).

[6]  Tomas Akenine-Möller,et al.  A Fast Triangle-Triangle Intersection Test , 1997, J. Graphics, GPU, & Game Tools.

[7]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[8]  Tomas Möller,et al.  A fast triangle-triangle intersection test , 1997 .

[9]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[10]  Robert P. Markot,et al.  Surface algorithms using bounds on derivatives , 1986, Comput. Aided Geom. Des..

[11]  Jörg Peters,et al.  SLEVEs for planar spline curves , 2004, Comput. Aided Geom. Des..

[12]  Josep Tornero,et al.  Efficient distance calculation using the spherically-extended polytope (S-tope) model , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[13]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[14]  Jörg Peters,et al.  Tight Linear Bounds on the Distance between a spline and its B-spline control polygon , 1999 .

[15]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[16]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[17]  S B MitchellJoseph,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998 .

[18]  Peter Schröder,et al.  Rapid evaluation of Catmull-Clark subdivision surfaces , 2002, Web3D '02.

[19]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.