Recovering edges in ill-posed inverse problems: optimality of curvelet frames

We consider a model problem of recovering a function $f(x_1,x_2)$ from noisy Radon data. The function $f$ to be recovered is assumed smooth apart from a discontinuity along a $C^2$ curve, that is, an edge. We use the continuum white-noise model, with noise level $\varepsilon$. Traditional linear methods for solving such inverse problems behave poorly in the presence of edges. Qualitatively, the reconstructions are blurred near the edges; quantitatively, they give in our model mean squared errors (MSEs) that tend to zero with noise level $\varepsilon$ only as $O(\varepsilon^{1/2})$ as $\varepsilon\to 0$. A recent innovation--nonlinear shrinkage in the wavelet domain--visually improves edge sharpness and improves MSE convergence to $O(\varepsilon^{2/3})$. However, as we show here, this rate is not optimal. In fact, essentially optimal performance is obtained by deploying the recently-introduced tight frames of curvelets in this setting. Curvelets are smooth, highly anisotropic elements ideally suited for detecting and synthesizing curved edges. To deploy them in the Radon setting, we construct a curvelet-based biorthogonal decomposition of the Radon operator and build "curvelet shrinkage" estimators based on thresholding of the noisy curvelet coefficients. In effect, the estimator detects edges at certain locations and orientations in the Radon domain and automatically synthesizes edges at corresponding locations and directions in the original domain. We prove that the curvelet shrinkage can be tuned so that the estimator will attain, within logarithmic factors, the MSE $O(\varepsilon^{4/5})$ as noise level $\varepsilon\to 0$. This rate of convergence holds uniformly over a class of functions which are $C^2$ except for discontinuities along $C^2$ curves, and (except for log terms) is the minimax rate for that class. Our approach is an instance of a general strategy which should apply in other inverse problems; we sketch a deconvolution example.

[1]  D. Donoho,et al.  Geometrizing Rates of Convergence, III , 1991 .

[2]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[3]  李幼升,et al.  Ph , 1989 .

[4]  Y. Meyer Opérateurs de Calderón-Zygmund , 1990 .

[5]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[6]  E. Candès Harmonic Analysis of Neural Networks , 1999 .

[7]  M. Nussbaum Spline Smoothing in Regression Models and Asymptotic Efficiency in $L_2$ , 1985 .

[8]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[9]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[10]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[11]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[13]  S. Mallat,et al.  Thresholding estimators for linear inverse problems and deconvolutions , 2003 .

[14]  M. Bertero Linear Inverse and III-Posed Problems , 1989 .

[15]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[16]  Advances in Electronics and Electron Physics , 1973 .

[17]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[18]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[19]  I. Johnstone,et al.  Minimax risk overlp-balls forlp-error , 1994 .

[20]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[21]  Michael Nussbaum,et al.  Minimax quadratic estimation of a quadratic functional , 1990, J. Complex..

[22]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[23]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[24]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[25]  G. Wahba Spline models for observational data , 1990 .

[26]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[27]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[28]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[29]  David L. Donoho,et al.  Orthonormal Ridgelets and Linear Singularities , 2000, SIAM J. Math. Anal..

[30]  D. Donoho,et al.  Renormalization Exponents and Optimal Pointwise Rates of Convergence , 1992 .

[31]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[32]  M Berteroi,et al.  Linear inverse problems with discrete data. I. General formulation and singular system analysis , 1985 .

[33]  Jürgen Pilz,et al.  Minimax linear regression estimation with symmetric parameter restrictions , 1986 .

[34]  D. Donoho Renormalizing Experiments for Nonlinear Functionals , 1997 .

[35]  D. Donoho Asymptotic minimax risk for sup-norm loss: Solution via optimal recovery , 1994 .

[36]  F. O’Sullivan A Statistical Perspective on Ill-posed Inverse Problems , 1986 .

[37]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[38]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[39]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Thomas S. Huang,et al.  Image processing , 1971 .

[41]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[42]  D. Donoho Sparse Components of Images and Optimal Atomic Decompositions , 2001 .

[43]  I. Johnstone,et al.  ASYMPTOTIC MINIMAXITY OF WAVELET ESTIMATORS WITH SAMPLED DATA , 1999 .

[44]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[45]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[46]  D. Donoho Statistical Estimation and Optimal Recovery , 1994 .

[47]  A K Louis,et al.  Incomplete data problems in x-ray computerized tomography , 1986 .

[48]  Bernard W. Silverman,et al.  Speed of Estimation in Positron Emission Tomography and Related Inverse Problems , 1990 .

[49]  Bernard W. Silverman,et al.  Discretization effects in statistical inverse problems , 1991, J. Complex..

[50]  Michel Barlaud,et al.  Variational approach for edge-preserving regularization using coupled PDEs , 1998, IEEE Trans. Image Process..

[51]  Andreas Rieder,et al.  Incomplete data problems in X-ray computerized tomography , 1989 .

[52]  Sam Efromovich,et al.  Asymptotic equivalence of nonparametric regression and white noise model has its limits , 1996 .

[53]  I. Ibragimov,et al.  On Nonparametric Estimation of the Value of a Linear Functional in Gaussian White Noise , 1985 .

[54]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[55]  D. Donoho,et al.  Minimax Risk Over Hyperrectangles, and Implications , 1990 .

[56]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .