Efficient Computation of Jointree Bounds for Systematic MAP Search

The MAP (maximum a posteriori assignment) problem in Bayesian networks is the problem of finding the most probable instantiation of a set of variables given partial evidence for the remaining variables. The state-of-the-art exact solution method is depth-first branch-and-bound search using dynamic variable ordering and a jointree upper bound proposed by Park and Darwiche [2003]. Since almost all search time is spent computing the jointree bounds, we introduce an efficient method for computing these bounds incrementally. We point out that, using a static variable ordering, it is only necessary to compute relevant upper bounds at each search step, and it is also possible to cache potentials of the jointree for efficient backtracking. Since the jointree computation typically produces bounds for joint configurations of groups of variables, our method also instantiates multiple variables at each search step, instead of a single variable, in order to reduce the number of times that upper bounds need to be computed. Experiments show that this approach leads to orders of magnitude reduction in search time.

[1]  Changhe Yuan,et al.  Dynamic Weighting A* Search-based MAP Algorithm for Bayesian Networks , 2006, Probabilistic Graphical Models.

[2]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[3]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[4]  Solomon Eyal Shimony,et al.  Finding MAPs for Belief Networks is NP-Hard , 1994, Artif. Intell..

[5]  James D. Park,et al.  MAP Complexity Results and Approximation Methods , 2002, UAI.

[6]  Rina Dechter,et al.  Mini-buckets: A general scheme for bounded inference , 2003, JACM.

[7]  Adnan Darwiche,et al.  Compiling Bayesian Networks with Local Structure , 2005, IJCAI.

[8]  Rina Dechter,et al.  Mini-buckets: a general scheme for approximating inference , 2002 .

[9]  Marek J. Druzdzel,et al.  SMILE: Structural Modeling, Inference, and Learning Engine and GeNIE: A Development Environment for Graphical Decision-Theoretic Models , 1999, AAAI/IAAI.

[10]  Adnan Darwiche,et al.  Solving MAP Exactly by Searching on Compiled Arithmetic Circuits , 2006, AAAI.

[11]  Adnan Darwiche,et al.  Approximating MAP using Local Search , 2001, UAI.

[12]  Changhe Yuan,et al.  Annealed MAP , 2004, UAI.

[13]  Adnan Darwiche,et al.  Solving MAP Exactly using Systematic Search , 2002, UAI.

[14]  C. A. Murthy,et al.  Pattern Recognition Letters Pattern classification with genetic algorithms , 2003 .

[15]  José A. Gámez,et al.  Partial abductive inference in Bayesian belief networks using a genetic algorithm , 1999, Pattern Recognit. Lett..

[16]  Adnan Darwiche,et al.  Inference in belief networks: A procedural guide , 1996, Int. J. Approx. Reason..