Which ocean colour algorithm for MERIS in North West European waters

[1]  S. Wright,et al.  Phytoplankton pigments in oceanography , 2016 .

[2]  A. Newton,et al.  Using bio-optical parameters as a tool for detecting changes in the phytoplankton community (SW Portugal) , 2015 .

[3]  V. Brotas,et al.  Validation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia , 2015 .

[4]  Pascal Morin,et al.  Dynamics of air–sea CO 2 fluxes in the northwestern European shelf based on voluntary observing ship and satellite observations , 2015 .

[5]  Heiko Balzter,et al.  Validation of Envisat MERIS algorithms for chlorophyll retrieval in a large, turbid and optically-complex shallow lake , 2015 .

[6]  B. Nechad,et al.  CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters , 2015 .

[7]  N. Chang,et al.  Remote Sensing for Monitoring Surface Water Quality Status and Ecosystem State in Relation to the Nutrient Cycle: A 40-Year Perspective , 2015 .

[8]  Priscila Goela,et al.  Using CHEMTAX to evaluate seasonal and interannual dynamics of the phytoplankton community off the South-west coast of Portugal , 2014 .

[9]  James Harle,et al.  Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis , 2014, Global change biology.

[10]  Raimundo Real,et al.  The North Atlantic Oscillation and the Arctic Oscillation favour harmful algal blooms in SW Europe , 2014 .

[11]  A. Sazhin,et al.  Future Climate Scenarios for a Coastal Productive Planktonic Food Web Resulting in Microplankton Phenology Changes and Decreased Trophic Transfer Efficiency , 2014, PloS one.

[12]  S. Phinn,et al.  A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans , 2014 .

[13]  David A. Siegel,et al.  Global assessment of ocean carbon export by combining satellite observations and food‐web models , 2014 .

[14]  Priscila Goela,et al.  In situ validation of MERIS marine reflectance off the southwest Iberian Peninsula: assessment of vicarious adjustment and corrections for near-land adjacency , 2014 .

[15]  Carsten Brockmann,et al.  Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM , 2013 .

[16]  Stewart Bernard,et al.  The assessment of optimal MERIS ocean colour products in the shelf waters of the KwaZulu-Natal Bight, South Africa , 2013 .

[17]  H. B. Menon,et al.  Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea , 2013 .

[18]  Chengfeng Le,et al.  Long-term distribution patterns of remotely sensed water quality parameters in Chesapeake Bay , 2013 .

[19]  Menghua Wang,et al.  Seawifs Postlaunch Calibration and Validation Analyses , 2013 .

[20]  P. Naik,et al.  Light absorption properties of southeastern Bering Sea waters: Analysis, parameterization and implications for remote sensing , 2013 .

[21]  Lian Feng,et al.  Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements , 2013 .

[22]  J. Garnier,et al.  Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone , 2013, Biogeochemistry.

[23]  J. Karlsson,et al.  Can Humic Water Discharge Counteract Eutrophication in Coastal Waters? , 2013, PloS one.

[24]  Cédric Jamet,et al.  Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters , 2013 .

[25]  P Jeremy Werdell,et al.  Generalized ocean color inversion model for retrieving marine inherent optical properties. , 2013, Applied optics.

[26]  Jennifer P. Cannizzaro,et al.  On the Accuracy of SeaWiFS Ocean Color Data Products on the West Florida Shelf , 2013 .

[27]  Frank Günther,et al.  Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications , 2013 .

[28]  Jennifer P. Cannizzaro,et al.  Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary , 2013 .

[29]  A. Lindfors,et al.  MERIS Case II water processor comparison on coastal sites of the northern Baltic Sea , 2013 .

[30]  Anne Courrat,et al.  Three hundred ways to assess Europe's surface waters: An almost complete overview of biological methods to implement the Water Framework Directive , 2012 .

[31]  Anatoly A. Gitelson,et al.  Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters — The Azov Sea case study , 2012 .

[32]  C. Donlon,et al.  The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission , 2012 .

[33]  Á. Borja,et al.  Water quality assessment using satellite-derived chlorophyll-a within the European directives, in the southeastern Bay of Biscay. , 2012, Marine pollution bulletin.

[34]  K. Ruddick,et al.  Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel Coastal Waters , 2012 .

[35]  D. Mishra,et al.  Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters , 2012 .

[36]  Fayçal Bouraoui,et al.  Changes of nitrogen and phosphorus loads to European seas , 2012 .

[37]  Francis Gohin,et al.  Annual cycles of chlorophyll- a , non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters , 2011 .

[38]  J. Shutler,et al.  An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea , 2011 .

[39]  Nicolas Hoepffner,et al.  Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive , 2011 .

[40]  R. Bukata,et al.  An assessment of MERIS algal products during an intense bloom in Lake of the Woods , 2011 .

[41]  L. Vilas,et al.  Neural network estimation of chlorophyll a from MERIS full resolution data for the coastal waters of Galician rias (NW Spain) , 2011 .

[42]  Alexander A Gilerson,et al.  Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. , 2010, Optics express.

[43]  H. Dierssen Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate , 2010, Proceedings of the National Academy of Sciences.

[44]  C. Mannaerts,et al.  Medium resolution imaging spectrometer data for monitoring tropical coastal waters: a case study of Berau estuary, East Kalimantan, Indonesia , 2010 .

[45]  S. Maritorena,et al.  Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues , 2010 .

[46]  B. Worm,et al.  Global phytoplankton decline over the past century , 2010, Nature.

[47]  L. Pettersson,et al.  A new area-specific bio-optical algorithm for the Bay of Biscay and assessment of its potential for SeaWiFS and MODIS/Aqua data merging , 2010 .

[48]  R. Arnone,et al.  Uncertainties of Optical Parameters and Their Propagations in an Analytical Ocean Color Inversion Algorithm , 2010 .

[49]  C. Lancelot,et al.  Coloured dissolved organic matter (CDOM) in Southern North Sea waters: Optical characterization and possible origin. , 2009 .

[50]  Davide D'Alimonte,et al.  Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland , 2009 .

[51]  Timothy S. Moore,et al.  A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product , 2009 .

[52]  R. Santer,et al.  MERIS atmospheric correction over coastal waters: validation of the MERIS aerosol models using AERONET , 2009 .

[53]  Hui Feng,et al.  AERONET-OC: A Network for the Validation of Ocean Color Primary Products , 2009 .

[54]  Annelies Hommersom,et al.  Spatial and temporal variability in bio-optical properties of the Wadden Sea , 2009 .

[55]  D. Harbour,et al.  The Western English Channel observatory: Optical characteristics of station L4 , 2009 .

[56]  F. D’Ortenzio,et al.  Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project) , 2008 .

[57]  R. Pasterkamp,et al.  HYDROPT: A fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters , 2008 .

[58]  José F. Moreno,et al.  Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Giuseppe Zibordi,et al.  Assessment of satellite ocean color products at a coastal site , 2007 .

[60]  L. Pettersson,et al.  Inter‐comparison of ocean colour data products during algal blooms in the Skagerrak , 2007 .

[61]  Richard P. Santer,et al.  Bio-optical Properties of Coastal Waters in the Eastern English Channel , 2007 .

[62]  M. Edwards,et al.  A long‐term chlorophyll dataset reveals regime shift in North Sea phytoplankton biomass unconnected to nutrient levels , 2007 .

[63]  Kai Sørensen,et al.  Validation of MERIS water products and bio‐optical relationships in the Skagerrak , 2007 .

[64]  H. Siegel,et al.  Validation of MERIS Level‐2 products in the Baltic Sea, the Namibian coastal area and the Atlantic Ocean , 2007 .

[65]  R. Doerffer,et al.  The MERIS Case 2 water algorithm , 2007 .

[66]  G. Zibordi,et al.  Tower-based radiometric observations at a coastal site in the Baltic Proper , 2006 .

[67]  Y. Ahn,et al.  Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters , 2006 .

[68]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[69]  K. Ruddick,et al.  Seaborne measurements of near infrared water‐leaving reflectance: The similarity spectrum for turbid waters , 2006 .

[70]  Giuseppe Zibordi,et al.  Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site , 2006 .

[71]  Roland Doerffer,et al.  Improved determination of coastal water constituent concentrations from MERIS data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[72]  J. Gower,et al.  Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer , 2005 .

[73]  F. Gohin,et al.  Satellite-derived parameters for biological modelling in coastal waters: Illustration over the eastern continental shelf of the Bay of Biscay , 2005 .

[74]  K. Sørensen,et al.  Spectral optical and bio‐optical relationships in the Oslo Fjord compared with similar results from the Baltic Sea , 2005 .

[75]  D. Blondeau-Patissier,et al.  Comparison of bio-physical marine products from SeaWiFS, MODIS and a bio-optical model with in situ measurements from Northern European waters , 2004 .

[76]  P. V. Jørgensen SeaWiFS data analysis and match-ups with in situ chlorophyll concentrations in Danish waters , 2004 .

[77]  R. Pasterkamp,et al.  Mapping of the North Sea turbid coastal waters using SeaWiFS data , 2004 .

[78]  Dariusz Stramski,et al.  Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe , 2003 .

[79]  Dariusz Stramski,et al.  Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration , 2003 .

[80]  Janet W. Campbell,et al.  Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance , 2002 .

[81]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[82]  F. Gohin,et al.  A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters , 2002 .

[83]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[84]  F. Muller‐Karger,et al.  Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters: A Practical Method , 2000 .

[85]  J. Garrido,et al.  Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases , 2000 .

[86]  C. Mobley,et al.  Estimation of the remote-sensing reflectance from above-surface measurements. , 1999, Applied optics.

[87]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[88]  S. Gibb,et al.  Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC , 1997 .

[89]  H. Gordon,et al.  Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption. , 1997, Applied optics.

[90]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[91]  André Morel,et al.  Atmospheric correction of the ocean color observations of the medium resolution imaging spectrometer (MERIS) , 1997, Other Conferences.

[92]  L. Kou,et al.  Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.

[93]  C. Lorenzen,et al.  DETERMINATION OF CHLOROPHYLL AND PHEO‐PIGMENTS: SPECTROPHOTOMETRIC EQUATIONS1 , 1967 .

[94]  P. Goryl SENTINEL-3 OPTICAL PRODUCTS AND ALGORITHM DEFINITION , 2019 .

[95]  Yi Ma,et al.  Assessment of satellite ocean color products of MERIS, MODIS and SeaWiFS along the East China Coast (in the Yellow Sea and East China Sea) , 2014 .

[96]  Carlo Brandini,et al.  Evaluation of empirical and semi-analytical chlorophyll algorithms in the Ligurian and North Tyrrhenian Seas , 2012 .

[97]  M. D. Macedo,et al.  Climatological space and time variation of the Portuguese coastal upwelling , 2012 .

[98]  Bertrand Saulquin,et al.  Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll- a Data From 1998 to 2008 on the European Atlantic Shelf , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[99]  Atbd Vicarious adjustment of the MERIS Ocean Colour Radiometry , 2011 .

[100]  H. Murakami,et al.  Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia. , 2010, Marine pollution bulletin.

[101]  André Valente,et al.  On the observability of the fortnightly cycle of the Tagus estuary turbid plume using MODIS ocean colour images , 2009 .

[102]  S. V. Cristinat,et al.  Assessment of Water-Leaving Reflectances of Oceanic and Coastal Waters Using MERIS Satellite Products off the Southwest Coast of Portugal , 2009 .

[103]  Menghua Wang,et al.  Remote Sensing of Inherent Optical Properties : Fundamentals , 2009 .

[104]  Thierry Hoch,et al.  Two- or three-layered box-models versus fine 3D models for coastal ecological modelling? A comparative study in the English Channel (Western Europe) , 2007 .

[105]  Carsten Brockmann,et al.  Atlas of chlorophyll-a concentration for the North Sea (based on MERIS imagery of 2003) , 2005 .

[106]  S. Peters,et al.  Validation of MERIS level 2 products in the North Sea: Dutch results for 2002-2003 , 2004 .

[107]  K. Arrigo,et al.  Volume 11, SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3 , 2000 .

[108]  A. H. Taylor,et al.  The Hydrography and Hydrographic Balances of the North Sea , 1993 .

[109]  Guerreiro,et al.  Climatological space and time-variation of the portuguese coastal upwelling , 1982 .