In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces

[1]  M. State,et al.  Correction: The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos , 2020, Development.

[2]  Maria K. Lehtinen,et al.  Emergence and Developmental Roles of the Cerebrospinal Fluid System. , 2020, Developmental cell.

[3]  Claire Wyart,et al.  Origin and role of the cerebrospinal fluid bidirectional flow in the central canal , 2020, eLife.

[4]  H. Omran,et al.  De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry. , 2019, American journal of human genetics.

[5]  P. Tam,et al.  Mechanistic insights from the LHX1‐driven molecular network in building the embryonic head , 2019, Development, growth & differentiation.

[6]  M. Khokha,et al.  Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus , 2019, Scientific Reports.

[7]  E. Yaksi,et al.  Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development , 2019, Current Biology.

[8]  Weiguo Peng,et al.  Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension , 2018, Nature Communications.

[9]  R. Heald,et al.  Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos. , 2018, Developmental biology.

[10]  C. Dey,et al.  Effect of inhibition of axonemal dynein ATPases on the regulation of flagellar and ciliary waveforms in Leishmania parasites. , 2018, Molecular and biochemical parasitology.

[11]  Edward R. Smith,et al.  De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus , 2018, Neuron.

[12]  C. Koch,et al.  A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits , 2018, bioRxiv.

[13]  Jens Frahm,et al.  Respiration and the watershed of spinal CSF flow in humans , 2018, Scientific Reports.

[14]  Y. Youn,et al.  Primary Cilia in Brain Development and Diseases. , 2018, The American journal of pathology.

[15]  H. Koch,et al.  Human Cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures , 2017, Scientific Reports.

[16]  Johannes Schindelin,et al.  TrackMate: An open and extensible platform for single-particle tracking. , 2017, Methods.

[17]  H. Straka,et al.  Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles , 2017, Journal of Experimental Biology.

[18]  B. Durand,et al.  An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center , 2016, Journal of developmental biology.

[19]  A. Álvarez-Buylla,et al.  Planar Organization of Multiciliated Ependymal (E1) Cells in the Brain Ventricular Epithelium , 2016, Trends in Neurosciences.

[20]  G. Eichele,et al.  Cilia-based flow network in the brain ventricles , 2016, Science.

[21]  Hazel Sive,et al.  Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish , 2016, Fluids and Barriers of the CNS.

[22]  R. Burdine,et al.  c21orf59/kurly Controls Both Cilia Motility and Polarization. , 2016, Cell reports.

[23]  Stephen P. Currie,et al.  A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles , 2016, Journal of Neurophysiology.

[24]  Maria K. Lehtinen,et al.  Progressive Differentiation and Instructive Capacities of Amniotic Fluid and Cerebrospinal Fluid Proteomes following Neural Tube Closure. , 2015, Developmental cell.

[25]  Johannes E. Schindelin,et al.  The ImageJ ecosystem: An open platform for biomedical image analysis , 2015, Molecular reproduction and development.

[26]  V. Knobloch,et al.  Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles , 2014, Journal of The Royal Society Interface.

[27]  T. Thumberger,et al.  Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1 , 2013, Cilia.

[28]  Lance Lee Riding the wave of ependymal cilia: Genetic susceptibility to hydrocephalus in primary ciliary dyskinesia , 2013, Journal of neuroscience research.

[29]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[30]  Juan Luis Gutiérrez-Chico,et al.  Optical coherence tomography: from research to practice , 2012, European heart journal cardiovascular Imaging.

[31]  M. Khokha,et al.  Generating diploid embryos from Xenopus tropicalis. , 2012, Methods in molecular biology.

[32]  F. Conlon,et al.  Xenopus: An emerging model for studying congenital heart disease. , 2011, Birth defects research. Part A, Clinical and molecular teratology.

[33]  A. Louvi,et al.  Cilia in the CNS: The Quiet Organelle Claims Center Stage , 2011, Neuron.

[34]  Maria K. Lehtinen,et al.  The Cerebrospinal Fluid Provides a Proliferative Niche for Neural Progenitor Cells , 2011, Neuron.

[35]  Andreas A. Linninger,et al.  Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain , 2011, Comput. Biol. Medicine.

[36]  J. Madsen,et al.  The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility , 2011, Fluids and Barriers of the CNS.

[37]  H. Okano,et al.  Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II , 2010, Development.

[38]  Oliver Ganslandt,et al.  Insight into the patterns of cerebrospinal fluid flow in the human ventricular system using MR velocity mapping , 2010, NeuroImage.

[39]  K. Sawamoto,et al.  Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia , 2010, Nature Cell Biology.

[40]  Jose Manuel García-Verdugo,et al.  Cilia Organize Ependymal Planar Polarity , 2010, The Journal of Neuroscience.

[41]  M. Nachury,et al.  The perennial organelle: assembly and disassembly of the primary cilium , 2010, Journal of Cell Science.

[42]  Andreas A. Linninger,et al.  Cerebrospinal Fluid Flow Dynamics in the Central Nervous System , 2010, Annals of Biomedical Engineering.

[43]  A. Sater,et al.  Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6 , 2009, Developmental biology.

[44]  Yuuri Yasuoka,et al.  Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3 , 2009, Development.

[45]  H. Power,et al.  Three-dimensional cerebrospinal fluid flow within the human ventricular system , 2008, Computer methods in biomechanics and biomedical engineering.

[46]  Harold L Rekate,et al.  The definition and classification of hydrocephalus: a personal recommendation to stimulate debate , 2008, Cerebrospinal Fluid Research.

[47]  Vartan Kurtcuoglu,et al.  Mixing and modes of mass transfer in the third cerebral ventricle: a computational analysis. , 2007, Journal of biomechanical engineering.

[48]  E. Dougherty,et al.  Effects of heavy metals on structure, function, and metabolism of ciliated respiratory epithelium in vitro , 1982, In Vitro - Plant.

[49]  S. Scholpp,et al.  Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon , 2006, Development.

[50]  Hideyuki Okano,et al.  New Neurons Follow the Flow of Cerebrospinal Fluid in the Adult Brain , 2006, Science.

[51]  B. Yoder,et al.  Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus , 2005, Development.

[52]  Harukazu Nakamura,et al.  Isthmus organizer for midbrain and hindbrain development , 2005, Brain Research Reviews.

[53]  K. Takata,et al.  Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. , 2004, International review of cytology.

[54]  A. Gona,et al.  Ultrastructural studies on the ventricular surface of the frog cerebellum , 2004, Cell and Tissue Research.

[55]  A. Raimondi A unifying theory for the definition and classification of hydrocephalus , 2004, Child's Nervous System.

[56]  M. Wassef,et al.  The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures , 2003, Development.

[57]  D. L. Weeks,et al.  Conserved requirement of Lim1 function for cell movements during gastrulation. , 2003, Developmental cell.

[58]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[59]  Nancy Papalopulu,et al.  Techniques and probes for the study of Xenopus tropicalis development , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[60]  W. Harris,et al.  Induction and patterning of the telencephalon in Xenopus laevis , 2002, Development.

[61]  S. Rétaux,et al.  The LIM-Homeodomain Gene Family in the DevelopingXenopus Brain: Conservation and Divergences with the Mouse Related to the Evolution of the Forebrain , 2001, The Journal of Neuroscience.

[62]  A. Kania,et al.  Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. , 2000, Developmental biology.

[63]  L. Puelles,et al.  Patterns of calretinin, calbindin, and tyrosine‐hydroxylase expression are consistent with the prosomeric map of the frog diencephalon , 2000, The Journal of comparative neurology.

[64]  W. Weninger,et al.  The morphology of heart development in Xenopus laevis. , 2000, Developmental biology.

[65]  J. Fujimoto,et al.  Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. , 2000, Neoplasia.

[66]  S A Boppart,et al.  Optical coherence tomography imaging in developmental biology. , 2000, Methods in molecular biology.

[67]  A. Kania,et al.  Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation in the mouse. , 1999, Development.

[68]  M. Wullimann,et al.  Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains , 1999, Anatomy and Embryology.

[69]  S. Aizawa,et al.  Emx1 and Emx2 functions in development of dorsal telencephalon. , 1997, Development.

[70]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[71]  Luis Puelles,et al.  Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization , 1993, Trends in Neurosciences.

[72]  C. Stern,et al.  Segmental organization of embryonic diencephalon , 1993, Nature.

[73]  D. Greitz,et al.  Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. , 1993, Acta radiologica. Supplementum.

[74]  M. Gulisano,et al.  Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. , 1992, The EMBO journal.

[75]  C. Holt,et al.  Cephalic expression and molecular characterization of Xenopus En-2. , 1991, Development.

[76]  D. Purich,et al.  A reinvestigation of dynein ATPase kinetics and the inhibitory action of vanadate. , 1982, The Journal of biological chemistry.

[77]  J. Jonsen,et al.  Effect of cadmium acetate, copper sulphate and nickel chloride on organ cultures of mouse trachea. , 2009, Acta pharmacologica et toxicologica.

[78]  F. J. Miller,et al.  Cytotoxic effects of nickel on ciliated epithelium. , 1978, The American review of respiratory disease.

[79]  D. J. Nelson,et al.  The distribution, activity, and function of the cilia in the frog brain , 1974, The Journal of physiology.

[80]  J. Faber,et al.  Normal table of Xenopus laevis (Daudin). A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. , 1956 .