Thalamocortical and corticocortical interactions in the somatosensory system.

Publisher Summary The classic feedforward model of touch provided a fundamental blueprint for the development of somatosensory research in the past five decades, a variety of experimental findings, and theoretical arguments demonstrate that, this model no longer offers an accurate description on how tactile perception emerges in the mammalian brain. Anatomical, physiological, and computational arguments favor the hypothesis that tactile perception emerges through interactive and recurrent interactions between multiple cortical and subcortical levels that define the mammalian somatosensory system. Central to this recurrent model of touch is the experimental demonstration that the massive corticofugal projections, that originate in the neocortex and reach most of the subcortical structures that form the somatosensory system, may play as relevant a role in tactile information processing as the parallel feed forward pathways of this system.

[1]  T. Salt,et al.  Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus , 1996, Progress in Neurobiology.

[2]  O. Creutzfeldt,et al.  Extracellular and intracellular recordings from cat's cortical whisker projection area: thalamocortical response transformation. , 1977, Journal of neurophysiology.

[3]  Donald J. Woodward,et al.  Modulation of sensory responsiveness of single somatosensory cortical cells during movement and arousal behaviors , 1981, Experimental Neurology.

[4]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[5]  M. Nicolelis,et al.  Immediate thalamic sensory plasticity depends on corticothalamic feedback. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Ogden Cortical control of thalamic somato-sensory relay nuclei. , 1960, Electroencephalography and clinical neurophysiology.

[7]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[8]  S. Grossberg The Link between Brain Learning, Attention, and Consciousness , 1999, Consciousness and Cognition.

[9]  J K Chapin,et al.  Mapping the effects of SI cortex stimulation on somatosensory relay neurons in the rat thalamus: direct responses and afferent modulation. , 1990, Somatosensory & motor research.

[10]  H. Killackey Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. , 1973, Brain research.

[11]  M. Nicolelis,et al.  Potential Circuit Mechanisms Underlying Concurrent Thalamic and Cortical Plasticity , 1998, Reviews in the neurosciences.

[12]  M. Brecht,et al.  Functional architecture of the mystacial vibrissae , 1997, Behavioural Brain Research.

[13]  M. Deschenes,et al.  Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: A three‐dimensional, graphic, and morphometric analysis , 1998, The Journal of comparative neurology.

[14]  B. Waterhouse,et al.  Noradrenergic modulation of cat area 17 neuronal responses to moving visual stimuli , 1994, Brain Research.

[15]  M. Nicolelis,et al.  Immediate and simultaneous sensory reorganization at cortical and subcortical levels of the somatosensory system. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Deschenes,et al.  Dendrodendritic and Axoaxonic Synapses in the Thalamic Reticular Nucleus of the Adult Rat , 1997, The Journal of Neuroscience.

[17]  R. Masterton,et al.  The sensory contribution of a single vibrissa's cortical barrel. , 1986, Journal of neurophysiology.

[18]  J K Chapin,et al.  A major direct GABAergic pathway from zona incerta to neocortex. , 1990, Science.

[19]  R W Guillery,et al.  Complexities in the Thalamocortical and Corticothalamic Pathways , 1997, The European journal of neuroscience.

[20]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[21]  R. Nelson Activity of monkey primary somatosensory cortical neurons changes prior to active movement , 1987, Brain Research.

[22]  H. Loos Barreloids in mouse somatosensory thalamus , 1976, Neuroscience Letters.

[23]  B. Pidoux,et al.  Projections on the cortical somatic I barrel subfield from ipsilateral vibrissae in adult rodents. , 1979, Electroencephalography and clinical neurophysiology.

[24]  M. Nicolelis,et al.  Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information , 1993, Nature.

[25]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[26]  H. Loos,et al.  Vibrissa-related behavior in mice: transient effect of ablation of the barrel cortex , 1991, Behavioural Brain Research.

[27]  D. Simons Temporal and spatial integration in the rat SI vibrissa cortex. , 1985, Journal of neurophysiology.

[28]  M. Deschenes,et al.  The Axonal Arborization of Single Thalamic Reticular Neurons in the Somatosensory Thalamus of the Rat , 1995, The European journal of neuroscience.

[29]  D. J. Felleman,et al.  Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation , 1983, Neuroscience.

[30]  R. Hampson,et al.  The significance of neural ensemble codes during behavior and cognition. , 1997, Annual review of neuroscience.

[31]  M. Deschenes,et al.  Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons , 1994, Brain Research.

[32]  L. Cohen,et al.  Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man. , 1987, Brain : a journal of neurology.

[33]  M. Nicolelis,et al.  Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. , 1995, Science.

[34]  J. Dostrovsky,et al.  Cortical Involvement in the Induction, But Not Expression, of Thalamic Plasticity , 1999, The Journal of Neuroscience.

[35]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[36]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[37]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  D J Woodward,et al.  Dynamic and distributed properties of many-neuron ensembles in the ventral posterior medial thalamus of awake rats. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M A Nicolelis,et al.  Nonlinear processing of tactile information in the thalamocortical loop. , 1997, Journal of neurophysiology.

[40]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[41]  J. Eccles,et al.  CORTICALLY EVOKED DEPOLARIZATION OF PRIMARY AFFERENT FIBERS IN THE SPINAL CORD. , 1964, Journal of neurophysiology.

[42]  B. Connors,et al.  Short-term synaptic enhancement and long-term potentiation in neocortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  H. Fields,et al.  Anatomy and physiology of a nociceptive modulatory system. , 1985, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[45]  D. McCormick,et al.  Noradrenergic and serotonergic modulation of a hyperpolarization‐activated cation current in thalamic relay neurones. , 1990, The Journal of physiology.

[46]  J. Olavarria,et al.  Areal and laminar organization of corticocortical projections in the rat somatosensory cortex , 1990, The Journal of comparative neurology.

[47]  M F Jacquin,et al.  Intersubnuclear connections within the rat trigeminal brainstem complex. , 1990, Somatosensory & motor research.

[48]  J. Kaas,et al.  The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. , 1983, Annual review of neuroscience.

[49]  J. Chapin,et al.  Somatic sensory transmission to the cortex during movement: Gating of single cell responses to touch , 1982, Experimental Neurology.

[50]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[51]  T. Salt,et al.  Group III metabotropic glutamate receptors control corticothalamic synaptic transmission in the rat thalamus in vitro , 1999, The Journal of physiology.

[52]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[53]  Christopher R. Stambaugh,et al.  Simultaneous encoding of tactile information by three primate cortical areas , 1998, Nature Neuroscience.

[54]  A. Iggo,et al.  Somatosensory System , 1973 .

[55]  R. P. Erickson A neural metric , 1986, Neuroscience & Biobehavioral Reviews.

[56]  T. Salt,et al.  Modulation of sensory inhibition in the ventrobasal thalamus via activation of group II metabotropic glutamate receptors by 2R,4R-aminopyrrolidine-2,4-dicarboxylate , 1998, Experimental Brain Research.

[57]  Hyung-Cheul Shin,et al.  Mapping the effects of motor cortex stimulation on single neurons in the dorsal column nuclei in the rat: Direct responses and afferent modulation , 1989, Brain Research Bulletin.

[58]  R D Frostig,et al.  Varying the degree of single-whisker stimulation differentially affects phases of intrinsic signals in rat barrel cortex. , 1999, Journal of neurophysiology.

[59]  S. Feldman,et al.  Somatosensory Thalamic Neurons: Effects of Cortical Depression , 1967, Science.

[60]  P. Andersen,et al.  Cortico-fugal facilitation of thalamic transmission. , 1972, Brain, behavior and evolution.

[61]  T. Morrow,et al.  Corticofugal influences of S1 cortex on ventrobasal thalamic neurons in the awake rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  H. Killackey,et al.  Receptive-field properties of rat ventral posterior medial neurons before and after selective kainic acid lesions of the trigeminal brain stem complex. , 1987, Journal of neurophysiology.

[63]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[64]  Steven S. Hsiao,et al.  Neural mechanisms of tactile form recognition , 1995 .

[65]  M. Nicolelis,et al.  Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  J J Knierim,et al.  Neural responses to visual texture patterns in middle temporal area of the macaque monkey. , 1992, Journal of neurophysiology.

[67]  R D Frostig,et al.  Quantitative long-term imaging of the functional representation of a whisker in rat barrel cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[68]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[69]  H. Killackey,et al.  Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei , 1991, The Journal of comparative neurology.

[70]  E. J. Green,et al.  Recovery of vibrissae-dependent behavioral responses following barrelfield damage is not dependent upon the remaining somatosensory cortical tissue , 1995, Brain Research.

[71]  D J Simons,et al.  Spatial gradients and inhibitory summation in the rat whisker barrel system. , 1996, Journal of neurophysiology.

[72]  H. Sato,et al.  Temporal Characteristics of Response Integration Evoked by Multiple Whisker Stimulations in the Barrel Cortex of Rats , 1999, The Journal of Neuroscience.

[73]  Mara Fabri,et al.  Ipsilateral cortical connections of primary somatic sensory cortex in rats , 1991, The Journal of comparative neurology.

[74]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[75]  M. Nicolelis,et al.  Active tactile exploration influences the functional maturation of the somatosensory system. , 1996, Journal of neurophysiology.

[76]  D. McCormick,et al.  Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M. Deschenes,et al.  Projections to layer VI of the posteromedial barrel field in the rat: a reappraisal of the role of corticothalamic pathways. , 1998, Cerebral cortex.

[78]  D. Purves,et al.  Iterated patterns of brain circuitry (or how the cortex gets its spots) , 1992, Trends in Neurosciences.

[79]  B. Waterhouse,et al.  Topographic organization of rat locus coeruleus and dorsal raphe nuclei: Distribution of cells projecting to visual system structures , 1993, The Journal of comparative neurology.

[80]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[81]  E. White,et al.  Afferent and efferent projections of the region in mouse sml cortex which contains the posteromedial barrel subfield , 1977, The Journal of comparative neurology.

[82]  J. Chapin,et al.  Somatic sensory transmission to the cortex during movement: Phasic modulation over the locomotor step cycle , 1982, Experimental Neurology.

[83]  Beyond maps: a dynamic view of the somatosensory system. , 1996, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[84]  R. Nelson Responsiveness of monkey primary somatosensory cortical neurons to peripheral stimulation depends on ‘motor-set’ , 1984, Brain Research.

[85]  M A Nicolelis,et al.  Bilateral Integration of Whisker Information in the Primary Somatosensory Cortex of Rats , 2001, The Journal of Neuroscience.

[86]  C. Lin,et al.  Ontogeny of corticocortical projections of the rat somatosensory cortex. , 1991, Somatosensory & motor research.

[87]  M. Jacquin,et al.  Structure-function relationships in rat brain stem subnucleus interpolaris. VIII. Cortical inputs. , 1990, Journal of neurophysiology.

[88]  P. Andersen,et al.  Cortico-thalamic Facilitation of Somato-sensory Impulses , 1967, Nature.

[89]  J. Chapin,et al.  Corticocortical connections within the primary somatosensory cortex of the rat , 1987, The Journal of comparative neurology.

[90]  M. Deschenes,et al.  Single- and Multi-Whisker Channels in the Ascending Projections from the Principal Trigeminal Nucleus in the Rat , 1999, The Journal of Neuroscience.

[91]  B W Connors,et al.  Spatiotemporal properties of short-term plasticity sensorimotor thalamocortical pathways of the rat , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[93]  R. Erickson,et al.  Stimulus coding in topographic and nontopographic afferent modalities: on the significance of the activity of individual sensory neurons. , 1968, Psychological review.

[94]  D. Kleinfeld,et al.  Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage‐sensitive dyes , 1996, The Journal of comparative neurology.

[95]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[96]  J. W. Meakin,et al.  Medical Physiology, vol 1. , 1969 .

[97]  J. Chapin,et al.  Modulation of afferent transmission to single neurons in the ventroposterior thalamus during movement in rats , 1990, Neuroscience Letters.

[98]  J. D. Coulter,et al.  Sensory transmission through lemniscal pathway during voluntary movement in the cat. , 1974, Journal of neurophysiology.

[99]  R. Lee,et al.  Modification of the human somatosensory evoked response during voluntary movement. , 1974, Electroencephalography and clinical neurophysiology.

[100]  E. Guic-Robles,et al.  Rats can learn a roughness discrimination using only their vibrissal system , 1989, Behavioural Brain Research.

[101]  Joel L. Davis,et al.  Large-Scale Neuronal Theories of the Brain , 1994 .

[102]  T. Salt,et al.  Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro , 1998, The Journal of physiology.

[103]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[104]  Erika E. Fanselow,et al.  Behavioral Modulation of Tactile Responses in the Rat Somatosensory System , 1999, The Journal of Neuroscience.

[105]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[106]  R. Dykes Parallel processing of somatosensory information: A theory , 1983, Brain Research Reviews.

[107]  Asif A Ghazanfar,et al.  Hebb's Dream: The Resurgence of Cell Assemblies , 1997, Neuron.

[108]  J. Coquery Changes in somaesthetic evoked potentials during movement. , 1971, Brain research.

[109]  T. Morrow,et al.  Responsiveness of ventrobasal thalamic neurons after suppression of S1 cortex in the anesthetized rat , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.