Introduction to the h-Principle
暂无分享,去创建一个
[1] John B. Etnyre. Tight Contact Structures on Lens Spaces , 1998, math/9812065.
[2] A. Loi,et al. A symplectic version of Nash C1-isometric embedding theorem , 2002 .
[3] K. Honda. On the classification of tight contact structures I , 1999, math/9910127.
[4] S. Donaldson. Symplectic submanifolds and almost-complex geometry , 1996 .
[5] M. Gromov. Pseudo holomorphic curves in symplectic manifolds , 1985 .
[6] A. Sard,et al. The measure of the critical values of differentiable maps , 1942 .
[7] James Eells,et al. A setting for global analysis , 1966 .
[8] D. Mcduff. Examples of symplectic structures , 1987 .
[9] N. Kuiper,et al. On C1-isometric imbeddings. II , 1955 .
[10] M. Gromov. STABLE MAPPINGS OF FOLIATIONS INTO MANIFOLDS , 1969 .
[11] Kai Cieliebak,et al. Symplectic Geometry , 1992, New Spaces in Physics.
[12] M. Gromov. A TOPOLOGICAL TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS AND INEQUALITIES , 1970 .
[13] Y. Eliashberg. Geometry of Low-dimensional Manifolds: Filling by holomorphic discs and its applications , 1991 .
[14] C. McMullen,et al. $4$-manifolds with inequivalent symplectic forms and $3$-manifolds with inequivalent fibrations , 1999 .
[15] A. F. Filippov. Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side , 1967 .
[16] Eduard Zehnder,et al. Symplectic Invariants and Hamiltonian Dynamics , 1994 .
[17] J. Gray. SOME GLOBAL PROPERTIES OF CONTACT STRUCTURES , 1959 .
[18] W. Thurston. Some simple examples of symplectic manifolds , 1976 .
[19] Y. Eliashberg. COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Complexification of contact structures on 3-dimensional manifolds , 1985 .
[20] Vincent Borrelli. On totally real isotopy classes , 2002 .
[21] V. I. Arnol’d. First steps in symplectic topology , 1986 .
[22] R. Lutz. Structures de contact sur les fibrés principaux en cercles de dimension trois , 1977 .
[23] David Spring,et al. Convex integration theory , 1998 .
[24] Richard S. Palais,et al. HOMOTOPY THEORY OF INFINITE DIMENSIONAL MANIFOLDS , 1966 .
[25] A smooth counterexample to the Hamiltonian Seifert conjecture , 1997 .
[26] M. Berger,et al. Encounter with a geometer ENCOUNTER WITH A GEOMETER , 1999 .
[27] H. Whitney. On regular closed curves in the plane , 1937 .
[28] Dusa McDuff,et al. Introduction to Symplectic Topology , 1995 .
[29] Emmanuel Giroux. Une infinité de structures de contact tendues sur une infinité de variétés , 1999 .
[30] Augustin Banyaga,et al. Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique , 1978 .
[31] J. Martinet. Formes de Contact sur les Variétés de Dimension 3 , 1971 .
[32] Y. Ruan. Symplectic topology on algebraic 3-folds , 1994 .
[33] M. Datta. Homotopy Classification of Strict Contact Immersions , 1997 .
[34] Y. Eliashberg. Classification of overtwisted contact structures on 3-manifolds , 1989 .
[35] A. Haefliger. Lectures on the theorem of gromov , 1971 .
[36] M. Gromov,et al. CONVEX INTEGRATION OF DIFFERENTIAL RELATIONS. I , 1973 .
[37] M. Goresky,et al. Stratified Morse theory , 1988 .
[38] M. Gromov,et al. Construction of a smooth mapping with prescribed jacobian. I , 1973 .
[39] Robert L. Bryant,et al. Rigidity of integral curves of rank 2 distributions , 1993 .
[40] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[41] M. Gromov,et al. Partial Differential Relations , 1986 .
[42] S. Smale. The Classification of Immersions of Spheres in Euclidean Spaces , 1959 .
[43] H. Hofer,et al. Introduction to Symplectic Field Theory , 2000, math/0010059.
[44] C. Taubes. THE SEIBERG-WITTEN INVARIANTS AND SYMPLECTIC FORMS , 1994 .
[45] Masahisa Adachi,et al. Embeddings and immersions , 1993 .
[46] Stephen Smale,et al. A classification of immersions of the two-sphere , 1959 .