Introduction to the h-Principle

Intrigue Holonomic approximation: Jets and holonomy Thom transversality theorem Holonomic approximation Applications Differential relations and Gromov's $h$-principle: Differential relations Homotopy principle Open Diff $V$-invariant differential relations Applications to closed manifolds The homotopy principle in symplectic geometry: Symplectic and contact basics Symplectic and contact structures on open manifolds Symplectic and contact structures on closed manifolds Embeddings into symplectic and contact manifolds Microflexibility and holonomic $\mathcal{R}$-approximation First applications of microflexibility Microflexible $\mathfrak{U}$-invariant differential relations Further applications to symplectic geometry Convex integration: One-dimensional convex integration Homotopy principle for ample differential relations Directed immersions and embeddings First order linear differential operators Nash-Kuiper theorem Bibliography Index.

[1]  John B. Etnyre Tight Contact Structures on Lens Spaces , 1998, math/9812065.

[2]  A. Loi,et al.  A symplectic version of Nash C1-isometric embedding theorem , 2002 .

[3]  K. Honda On the classification of tight contact structures I , 1999, math/9910127.

[4]  S. Donaldson Symplectic submanifolds and almost-complex geometry , 1996 .

[5]  M. Gromov Pseudo holomorphic curves in symplectic manifolds , 1985 .

[6]  A. Sard,et al.  The measure of the critical values of differentiable maps , 1942 .

[7]  James Eells,et al.  A setting for global analysis , 1966 .

[8]  D. Mcduff Examples of symplectic structures , 1987 .

[9]  N. Kuiper,et al.  On C1-isometric imbeddings. II , 1955 .

[10]  M. Gromov STABLE MAPPINGS OF FOLIATIONS INTO MANIFOLDS , 1969 .

[11]  Kai Cieliebak,et al.  Symplectic Geometry , 1992, New Spaces in Physics.

[12]  M. Gromov A TOPOLOGICAL TECHNIQUE FOR THE CONSTRUCTION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS AND INEQUALITIES , 1970 .

[13]  Y. Eliashberg Geometry of Low-dimensional Manifolds: Filling by holomorphic discs and its applications , 1991 .

[14]  C. McMullen,et al.  $4$-manifolds with inequivalent symplectic forms and $3$-manifolds with inequivalent fibrations , 1999 .

[15]  A. F. Filippov Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side , 1967 .

[16]  Eduard Zehnder,et al.  Symplectic Invariants and Hamiltonian Dynamics , 1994 .

[17]  J. Gray SOME GLOBAL PROPERTIES OF CONTACT STRUCTURES , 1959 .

[18]  W. Thurston Some simple examples of symplectic manifolds , 1976 .

[19]  Y. Eliashberg COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Complexification of contact structures on 3-dimensional manifolds , 1985 .

[20]  Vincent Borrelli On totally real isotopy classes , 2002 .

[21]  V. I. Arnol’d First steps in symplectic topology , 1986 .

[22]  R. Lutz Structures de contact sur les fibrés principaux en cercles de dimension trois , 1977 .

[23]  David Spring,et al.  Convex integration theory , 1998 .

[24]  Richard S. Palais,et al.  HOMOTOPY THEORY OF INFINITE DIMENSIONAL MANIFOLDS , 1966 .

[25]  A smooth counterexample to the Hamiltonian Seifert conjecture , 1997 .

[26]  M. Berger,et al.  Encounter with a geometer ENCOUNTER WITH A GEOMETER , 1999 .

[27]  H. Whitney On regular closed curves in the plane , 1937 .

[28]  Dusa McDuff,et al.  Introduction to Symplectic Topology , 1995 .

[29]  Emmanuel Giroux Une infinité de structures de contact tendues sur une infinité de variétés , 1999 .

[30]  Augustin Banyaga,et al.  Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique , 1978 .

[31]  J. Martinet Formes de Contact sur les Variétés de Dimension 3 , 1971 .

[32]  Y. Ruan Symplectic topology on algebraic 3-folds , 1994 .

[33]  M. Datta Homotopy Classification of Strict Contact Immersions , 1997 .

[34]  Y. Eliashberg Classification of overtwisted contact structures on 3-manifolds , 1989 .

[35]  A. Haefliger Lectures on the theorem of gromov , 1971 .

[36]  M. Gromov,et al.  CONVEX INTEGRATION OF DIFFERENTIAL RELATIONS. I , 1973 .

[37]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[38]  M. Gromov,et al.  Construction of a smooth mapping with prescribed jacobian. I , 1973 .

[39]  Robert L. Bryant,et al.  Rigidity of integral curves of rank 2 distributions , 1993 .

[40]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[41]  M. Gromov,et al.  Partial Differential Relations , 1986 .

[42]  S. Smale The Classification of Immersions of Spheres in Euclidean Spaces , 1959 .

[43]  H. Hofer,et al.  Introduction to Symplectic Field Theory , 2000, math/0010059.

[44]  C. Taubes THE SEIBERG-WITTEN INVARIANTS AND SYMPLECTIC FORMS , 1994 .

[45]  Masahisa Adachi,et al.  Embeddings and immersions , 1993 .

[46]  Stephen Smale,et al.  A classification of immersions of the two-sphere , 1959 .