Selective Alterations in Postsynaptic Markers of Chandelier Cell Inputs to Cortical Pyramidal Neurons in Subjects with Schizophrenia

Markers of GABA neurotransmission between chandelier neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons, are altered in the dorsolateral prefrontal cortex (dlPFC) of subjects with schizophrenia. For example, immunoreactivity for the GABA membrane transporter (GAT1) is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. To understand the nature and functional significance of these alterations, we determined the density, laminar distribution, and length of AIS immunoreactive (IR) for ankryin-G and βIV spectrin, two proteins involved in the regulation of synapse structure and ion channel clustering at AIS, in dlPFC area 46 from 14 matched triads of subjects with schizophrenia or major depressive disorder (MDD) and normal comparison participants. The density of ankyrin-G-IR AIS in the superficial, but not in the deep, cortical layers was significantly decreased by 15–19% in the subjects with schizophrenia relative to the other participant groups. In contrast, no group differences were present in the density of βIV spectrin-IR AIS. The length of labeled AIS did not differ across participant groups for either ankyrin-G or βIV spectrin. The density of ankyrin-G-IR AIS was not altered in the dlPFC of macaque monkeys chronically exposed to antipsychotic medications. Given the important role of ankyrin-G in the recruitment and stabilization of sodium channels and other integral membrane proteins to AIS, our findings suggest that these processes are selectively altered in superficial layer pyramidal neurons in subjects with schizophrenia.

[1]  A. Baines,et al.  Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. , 2001, Physiological reviews.

[2]  D. Lewis,et al.  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. , 2000, Archives of general psychiatry.

[3]  V. Bennett,et al.  Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial adhesion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  David A Lewis,et al.  Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. , 2005, The American journal of psychiatry.

[5]  S. Cichon,et al.  Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder , 2008, Molecular Psychiatry.

[6]  S. Eggan,et al.  Postnatal development of pre‐ and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex , 2003, The Journal of comparative neurology.

[7]  Manuel A. R. Ferreira,et al.  Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder , 2008, Nature Genetics.

[8]  R. McCarley,et al.  A review of MRI findings in schizophrenia , 2001, Schizophrenia Research.

[9]  A. Sampson,et al.  Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. , 2001, Archives of general psychiatry.

[10]  S. Daviss,et al.  Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons , 1995, Psychiatry Research.

[11]  P S Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. , 1995, Cerebral cortex.

[12]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[13]  A. Sampson,et al.  Somal Size of Immunolabeled Pyramidal Cells in the Prefrontal Cortex of Subjects with Schizophrenia , 2006, Biological Psychiatry.

[14]  H. M. Morris,et al.  Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia , 2008, Molecular Psychiatry.

[15]  Wei Zhang,et al.  Reduced Dendritic Spine Density in Auditory Cortex of Subjects with Schizophrenia , 2009, Neuropsychopharmacology.

[16]  V. Bennett,et al.  AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. , 1995, The Journal of biological chemistry.

[17]  Vann Bennett,et al.  A Common Ankyrin-G-Based Mechanism Retains KCNQ and NaV Channels at Electrically Active Domains of the Axon , 2006, The Journal of Neuroscience.

[18]  A. Sampson,et al.  Gene Expression Deficits in a Subclass of GABA Neurons in the Prefrontal Cortex of Subjects with Schizophrenia , 2003, The Journal of Neuroscience.

[19]  M. Rasband,et al.  βIV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrinG , 2007, The Journal of cell biology.

[20]  J. Pierri,et al.  Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. , 1999, The American journal of psychiatry.

[21]  M. Rasband,et al.  Spectrin and Ankyrin-Based Cytoskeletons at Polarized Domains in Myelinated Axons , 2008, Experimental biology and medicine.

[22]  Priscilla Wu,et al.  Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment , 2004, Cell.

[23]  S. Akbarian,et al.  GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. , 1995, Cerebral cortex.

[24]  V. Bennett,et al.  Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments , 2001, The Journal of cell biology.

[25]  D. Lewis,et al.  GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. , 2008, Schizophrenia bulletin.

[26]  P. McKenna,et al.  Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor α-1 subunit messenger RNA and human GABA transporter-1 (hGAT-1) messenger RNA expression , 1999, Neuroscience.

[27]  Vann Bennett,et al.  AnkyrinG Is Required for Clustering of Voltage-gated Na Channels at Axon Initial Segments and for Normal Action Potential Firing , 1998, The Journal of cell biology.

[28]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[29]  D. Lewis,et al.  Parvalbumin‐immunoreactive axon terminals in macaque monkey and human prefrontal cortex: Laminar, regional, and target specificity of type I and type II synapses , 1999, The Journal of comparative neurology.

[30]  C. Carter,et al.  Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  B. Pakkenberg,et al.  No deficit in total number of neurons in the prefrontal cortex in schizophrenics. , 2001, Journal of psychiatric research.

[32]  J. B. Levitt,et al.  Patterns of intrinsic and associational circuitry in monkey prefrontal cortex , 1996, The Journal of comparative neurology.

[33]  A. Levey,et al.  Postnatal development of tyrosine hydroxylase- and dopamine transporter-immunoreactive axons in monkey rostral entorhinal cortex. , 1998, Cerebral cortex.

[34]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[35]  H. Ewers,et al.  Ankyrin-Dependent and -Independent Mechanisms Orchestrate Axonal Compartmentalization of L1 Family Members Neurofascin and L1/Neuron–Glia Cell Adhesion Molecule , 2007, The Journal of Neuroscience.

[36]  Zhuoxin Sun,et al.  The Influence of Chronic Exposure to Antipsychotic Medications on Brain Size before and after Tissue Fixation: A Comparison of Haloperidol and Olanzapine in Macaque Monkeys , 2005, Neuropsychopharmacology.

[37]  P. De Camilli,et al.  βIVΣ1 spectrin stabilizes the nodes of Ranvier and axon initial segments , 2004, The Journal of cell biology.

[38]  A. Sampson,et al.  Pyramidal cell size reduction in schizophrenia: evidence for involvement of auditory feedforward circuits , 2004, Biological Psychiatry.

[39]  Yogesh K. Dwivedi,et al.  Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. , 2000, Archives of general psychiatry.

[40]  L. Glantz,et al.  Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. , 1997, Archives of general psychiatry.

[41]  I Fariñas,et al.  Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. I. The cell body , 1991, The Journal of comparative neurology.

[42]  K. Kizhatil,et al.  FIGQY phosphorylation defines discrete populations of L1 cell adhesion molecules at sites of cell-cell contact and in migrating neurons. , 2001, Journal of cell science.

[43]  A. Sampson,et al.  Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. , 2002, Cerebral cortex.

[44]  M. Rasband,et al.  AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity , 2008, The Journal of cell biology.

[45]  A. Reiner,et al.  A simple and sensitive antigen retrieval method for free-floating and slide-mounted tissue sections , 1999, Journal of Neuroscience Methods.

[46]  A. Sampson,et al.  GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. , 2001, The American journal of psychiatry.

[47]  M. Rasband,et al.  Postnatal development of synaptic structure proteins in pyramidal neuron axon initial segments in monkey prefrontal cortex , 2009, The Journal of comparative neurology.

[48]  P. Goldman-Rakic,et al.  Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. , 1998, Archives of general psychiatry.

[49]  I Fariñas,et al.  Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment , 1991, The Journal of comparative neurology.

[50]  M J Campbell,et al.  The monoaminergic innervation of primate neocortex. , 1986, Human neurobiology.

[51]  T. Woo,et al.  A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  M. Solimena,et al.  βIV Spectrins Are Essential for Membrane Stability and the Molecular Organization of Nodes of Ranvier , 2004, The Journal of Neuroscience.

[53]  P. Goldman-Rakic,et al.  The synaptology of parvalbumin‐immunoreactive neurons in the primate prefrontal cortex , 1992, The Journal of comparative neurology.

[54]  David A Lewis,et al.  Reduced Pyramidal Cell Somal Volume in Auditory Association Cortex of Subjects with Schizophrenia , 2003, Neuropsychopharmacology.