Relationships Between Temperature, pH, and Crusting on Mg/Ca Ratios in Laboratory‐Grown Neogloboquadrina Foraminifera

Author(s): Davis, CV; Fehrenbacher, JS; Hill, TM; Russell, AD; Spero, HJ | Abstract: ©2017. American Geophysical Union. All Rights Reserved. Mg/Ca ratio paleothermometry in foraminifera is an important tool for the reconstruction and interpretation of past environments. However, existing Mg/Ca:temperature relationships for planktic species inhabiting middle- and high-latitude environments are limited by a lack of information about the development and impact of low-Mg/Ca ratio “crusts” and the influence of the carbonate system on Mg/Ca ratios in these groups. To address this, we cultured individual specimens of Neogloboquadrina incompta and Neogloboquadrina pachyderma in seawater across a range of temperature (6°–12°C) and pH (7.4–8.2). We found by laser ablation inductively couple mass spectrometry analyses of shells that culture-grown crust calcite in N. incompta had a lower Mg/Ca ratio than ontogenetic calcite formed at the same temperature, suggesting that temperature is not responsible for the low-Mg/Ca ratio of neogloboquadrinid crusts. The Mg/Ca:temperature relationship for ontogenetic calcite in N. incompta was consistent with the previously published culture-based relationship, and no significant relationship was found between Mg/Ca ratios and pH in this species. However, the Mg/Ca ratio in laboratory-cultured N. pachyderma was much higher than that reported in previous core top and sediment trap samples, due to lack of crust formation in culture. Application of our ontogenetic calcite-specific Mg/Ca:temperature relationships to fossil N. pachyderma and N. incompta from five intervals in cores from the Santa Barbara Basin and the Bering Sea shows that excluding crust calcite in fossil specimens may improve Mg/Ca-based temperature estimates.

[1]  A. Gagnon,et al.  Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei , 2017, Nature Communications.

[2]  A. Singh,et al.  Geochemical imprints of genotypic variants of Globigerina bulloides in the Arabian Sea , 2016 .

[3]  G. Brummer,et al.  Chamber formation leads to Mg/Ca banding in the planktonic foraminifer Neogloboquadrina pachyderma , 2016 .

[4]  J. Jahncke,et al.  Seasonality in planktic foraminifera of the central California coastalupwelling region , 2016 .

[5]  A. Mackensen,et al.  Mg/Ca thermometry in planktic foraminifera: Improving paleotemperature estimations for G. bulloides and N. pachyderma left , 2016 .

[6]  J. Erez,et al.  Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change , 2016 .

[7]  G. Reichart,et al.  Profiling planktonic foraminiferal crust formation , 2015 .

[8]  S. Eggins,et al.  Optimizing LA-ICP-MS analytical procedures for elemental depth profiling of foraminifera shells , 2015 .

[9]  M. Kučera,et al.  Global analysis of seasonality in the shell flux of extant planktonic foraminifera , 2015 .

[10]  H. Elderfield,et al.  Revisiting diagenesis on the Ontong Java Plateau: Evidence for authigenic crust precipitation in Globorotalia tumida , 2015 .

[11]  J. Erez,et al.  Biomineralization in perforate foraminifera , 2014 .

[12]  P. deMenocal,et al.  The Influence of Salinity on Mg/Ca in Planktic Foraminifers – Evidence from Cultures, Core-top Sediments and Complementary δ18O , 2013 .

[13]  P. G. Mortyn,et al.  Seasonal Mg/Ca variability of N. pachyderma (s) and G. bulloides: Implications for seawater temperature reconstruction , 2013 .

[14]  T. Laepple,et al.  Reconciling Discrepancies between Uk37 and Mg/Ca Reconstructions of Holocene Marine Temperature Variability , 2013 .

[15]  Julene P. Marr,et al.  Trace element variability in crust-bearing and non crust-bearing Neogloboquadrina incompta, P--D intergrade and Globoconella inflata from the Southwest Pacific Ocean: Potential paleoceanographic implications , 2013 .

[16]  Mea S. Cook,et al.  Millennial‐scale climate change and intermediate water circulation in the Bering Sea from 90 ka: A high‐resolution record from IODP Site U1340 , 2013 .

[17]  R. Zahn,et al.  Encrustation and trace element composition of Neogloboquadrina dutertrei assessed from single chamber analyses – implications for paleotemperature estimates , 2012 .

[18]  F. Eynaud Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations , 2011 .

[19]  L. D. Nooijer,et al.  Interindividual variability and ontogenetic effects on Mg and Sr incorporation in the planktonic foraminifer Globigerinoides sacculifer , 2011 .

[20]  G. Leduc,et al.  Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry , 2010 .

[21]  F. Millero Carbonate constants for estuarine waters , 2010 .

[22]  G. Reichart,et al.  Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state , 2010 .

[23]  J. Brigham‐Grette,et al.  Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records , 2010 .

[24]  P. Martin,et al.  Mg/Ca variability of the planktonic foraminifera G. ruber s.s. and N. dutertrei from shallow and deep cores determined by electron microprobe image mapping , 2010 .

[25]  G. Nehrke,et al.  Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida , 2010 .

[26]  S. Eggins,et al.  Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata , 2009 .

[27]  M. Weinelt,et al.  Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements , 2009 .

[28]  M. Meredith,et al.  Controls on stable isotope and trace metal uptake in Neogloboquadrina pachyderma (sinistral) from an Antarctic sea-ice environment , 2009 .

[29]  J. Valley,et al.  Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe , 2009 .

[30]  H. Elderfield,et al.  Mg/Ca in the benthic foraminifera Cibicidoides wuellerstorfi and Cibicidoides mundulus: Temperature versus carbonate ion saturation , 2008 .

[31]  C. Edwards,et al.  A 5 million year comparison of Mg/Ca and alkenone paleothermometers , 2008 .

[32]  J. Duplessy,et al.  Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction , 2008, Paleoceanography.

[33]  K. Darling,et al.  The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes , 2008 .

[34]  H. Kuhnert,et al.  Carbonate ion effect on Mg/Ca, Sr/Ca and stable isotopes on the benthic foraminifera Oridorsalis umbonatus off Namibia , 2008 .

[35]  Henry Elderfield,et al.  Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis , 2006 .

[36]  Dick Kroon,et al.  A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. , 2006 .

[37]  S. Eggins,et al.  Characterization of Mg/Ca distributions in planktonic foraminifera species by electron microprobe mapping , 2005 .

[38]  D. Lea,et al.  Effects of temperature on Mg/Ca in neogloboquadrinid shells determined by live culturing , 2005 .

[39]  Stephen Barker,et al.  Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum , 2005 .

[40]  B. Hönisch,et al.  Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera , 2004 .

[41]  S. Eggins,et al.  Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: A complication for seawater thermometry? , 2004 .

[42]  G. Haug,et al.  Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch , 2004, Nature.

[43]  D. Field Variability in vertical distributions of planktonic foraminifera in the California Current: Relationships to vertical ocean structure , 2004 .

[44]  M. Kučera,et al.  Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Lea,et al.  Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation , 2004, Nature.

[46]  N. Rogers,et al.  Determination of intratest variability of trace elements in foraminifera by laser ablation inductively coupled plasma‐mass spectrometry , 2003 .

[47]  J. Zachos,et al.  Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera , 2003 .

[48]  R. Thunell,et al.  Using species-specific paleotemperature equations with foraminifera: a case study in the Southern California Bight , 2002 .

[49]  G. Winckler,et al.  Carbon isotopes and habitat of polar planktic foraminifera in the Okhotsk Sea: the ‘carbonate ion effect’ under natural conditions , 2002 .

[50]  H. Elderfield,et al.  Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios , 2000, Nature.

[51]  R. Thunell,et al.  Planktonic foraminiferal fluxes in the Santa Barbara Basin: response to seasonal and interannual hydrographic changes , 2000 .

[52]  R. Schneider,et al.  Paleo‐sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: A comparison to sea surface temperature estimates from U37K′, oxygen isotopes, and foraminiferal transfer function , 2000 .

[53]  D. Lea,et al.  Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing , 1999 .

[54]  D. Lea,et al.  Glacial–interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg , 1999 .

[55]  Jelle Bijma,et al.  Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations , 1998 .

[56]  E. Boyle,et al.  Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography , 1997 .

[57]  K. Kohfeld,et al.  Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments , 1996 .

[58]  C. Hemleben,et al.  Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures , 1996 .

[59]  D. Nürnberg MAGNESIUM IN TESTS OF NEOGLOBOQUADRINA PACHYDERMA SINISTRAL FROM HIGH NORTHERN AND SOUTHERN LATITUDES , 1995 .

[60]  Stephen F. Ackley,et al.  Sea ice a habitat for the foraminifer Neogloboquadrina pachyderma , 1991 .

[61]  Christoph Hemleben,et al.  Modern Planktonic Foraminifera , 1988, Springer New York.

[62]  R. Thunell,et al.  Seasonal and interannual changes in planktonic foraminiferal production in the North Pacific , 1987, Nature.

[63]  G. Dieckmann,et al.  Distribution and abundance of the planktic foraminifer Neogloboquadrina pachyderma in sea ice of the Weddell Sea (Antarctica) , 1986, Polar Biology.

[64]  R. Arikawa Distribution and Taxonomy of Globigerina pachyderma (Ehrenberg) off the Sanriku Coast, Northeast Honshu, Japan , 1983 .

[65]  J. Jahncke,et al.  Seasonality in planktic foraminifera of the central California coastal upwelling region , 2016 .

[66]  S. Eggins,et al.  Timing and mechanism for intratest Mg/Ca variability in a living planktic foraminifer , 2015 .

[67]  T. Hill,et al.  Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal community perspective , 2014 .

[68]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[69]  Stephan C. Meylan,et al.  CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone) , 2010 .

[70]  F. Eynaud,et al.  Morphological variability of the planktonic foraminifer Neogloboquadrina pachyderma from ACEX cores: Implications for Late Pleistocene circulation in the Arctic Ocean , 2009, Micropaleontology.

[71]  S. Levitus,et al.  World ocean atlas 2013. Volume 1, Temperature , 2002 .

[72]  P. Martin,et al.  Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core , 2002 .

[73]  B. Malmgren,et al.  Relationship between late Quaternary upwelling history and coiling properties of Neogloboquadrina pachyderma and Globigerina bulloides in the Arabian Sea , 1996 .

[74]  C. Hemleben,et al.  Chamber Formation in Planktonic Foraminifera , 1979 .

[75]  S. Gorshkov,et al.  World ocean atlas , 1976 .