Self-error-rejecting quantum state transmission of entangled photons for faithful quantum communication without calibrated reference frames

We propose an alignment-free two-party polarization-entanglement transmission scheme for entangled photons by using only linear-optical elements, requiring neither ancillary photons nor calibrated reference frames. The scheme is robust against both the random channel noise and the instability of reference frames, and it is subsequently extended to multi-party Greenberger-Horne-Zeilinger state transmission. Furthermore, the success probabilities for two- and multi-party entanglement transmission are, in principle, improved to unity when active polarization controllers are used. The distinct characters of a simple structure, easy to be implemented, and a high fidelity and efficiency make our protocol very useful for long-distance quantum communications and distributed quantum networks in practical applications.

[1]  C. Souza,et al.  Quantum key distribution without a shared reference frame , 2008 .

[2]  Feihu Xu,et al.  Quantum-memory-assisted multi-photon generation for efficient quantum information processing , 2017, 1704.00879.

[3]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[4]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[5]  R. Chaves,et al.  Experimental bilocality violation without shared reference frames , 2017, 1705.03309.

[6]  Franco Nori,et al.  Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification. , 2017, Physical review letters.

[7]  R. Laflamme,et al.  Robust quantum communication using a polarization-entangled photon pair. , 2004, Physical review letters.

[8]  Yu-Bo Sheng,et al.  Hybrid entanglement purification for quantum repeaters , 2013 .

[9]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[10]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[11]  Demetrios A. Kalamidas,et al.  Linear optical scheme for error-free entanglement distribution and a quantum repeater , 2006, quant-ph/0601203.

[12]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[13]  Yu-Bo Sheng,et al.  Deterministic polarization entanglement purification using time-bin entanglement , 2013, 1311.0470.

[14]  Ebrahim Karimi,et al.  Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates , 2009, 0905.0562.

[15]  G. Vallone,et al.  Free-space quantum key distribution by rotation-invariant twisted photons. , 2014, Physical review letters.

[16]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[17]  Andrzej Dragan,et al.  Communication between inertial observers with partially correlated reference frames , 2015 .

[18]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[19]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[20]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[21]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[22]  D. Bouwmeester,et al.  Bit-flip-error rejection in optical quantum communication , 2001 .

[23]  Thora Tenbrink,et al.  Reference Frames , 2017, Encyclopedia of GIS.

[24]  Demetrios A. Kalamidas Single-photon quantum error rejection and correction with linear optics , 2005, quant-ph/0506114.

[25]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[26]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[27]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[28]  A Peres,et al.  Entangled quantum states as direction indicators. , 2001, Physical review letters.

[29]  Yu-Bo Sheng,et al.  Distributed secure quantum machine learning. , 2017, Science bulletin.

[30]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[31]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[32]  L Aolita,et al.  Quantum communication without alignment using multiple-qubit single-photon states. , 2007, Physical review letters.

[33]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[34]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[36]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[37]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[38]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[39]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[40]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[41]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[42]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[43]  Franco Nori,et al.  Heralded quantum controlled- phase gates with dissipative dynamics in macroscopically distant resonators , 2016, 1608.04195.

[44]  Fabio Sciarrino,et al.  Complete experimental toolbox for alignment-free quantum communication , 2013 .

[45]  Masato Koashi,et al.  Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace , 2008, 0806.2896.

[46]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[47]  Masato Koashi,et al.  Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking , 2006, quant-ph/0607159.

[48]  Wei Zhang,et al.  Experimental long-distance quantum secure direct communication. , 2017, Science bulletin.

[49]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[50]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[51]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[52]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[53]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[54]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[55]  J. Borregaard,et al.  Heralded Quantum Gates with Integrated Error Detection in Optical Cavities , 2015, 1501.00956.