Comparison of Spatiotemporal Fusion Models: A Review

Simultaneously capturing spatial and temporal dynamics is always a challenge for the remote sensing community. Spatiotemporal fusion has gained wide interest in various applications for its superiority in integrating both fine spatial resolution and frequent temporal coverage. Though many advances have been made in spatiotemporal fusion model development and applications in the past decade, a unified comparison among existing fusion models is still limited. In this research, we classify the models into three categories: transformation-based, reconstruction-based, and learning-based models. The objective of this study is to (i) compare four fusion models (STARFM, ESTARFM, ISTAFM, and SPSTFM) under a one Landsat-MODIS (L-M) pair prediction mode and two L-M pair prediction mode using time-series datasets from the Coleambally irrigation area and Poyang Lake wetland; (ii) quantitatively assess prediction accuracy considering spatiotemporal comparability, landscape heterogeneity, and model parameter selection; and (iii) discuss the advantages and disadvantages of the three categories of spatiotemporal fusion models.

[1]  Bin Chen,et al.  A Novel Method for Measuring Landscape Heterogeneity Changes , 2015, IEEE Geoscience and Remote Sensing Letters.

[2]  Hoshin Vijai Gupta,et al.  Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling , 2009 .

[3]  Xavier Otazu,et al.  Multiresolution-based image fusion with additive wavelet decomposition , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  B. Xu,et al.  Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing , 2012 .

[5]  Fubao Sun,et al.  Partitioning the variance between space and time , 2010 .

[6]  Desheng Liu,et al.  Blending MODIS and Landsat images for urban flood mapping , 2014 .

[7]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .

[8]  W. Cohen,et al.  Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection , 2005 .

[9]  Quansheng Ge,et al.  A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling , 2010 .

[10]  B. Xu,et al.  Bi-scale analysis of multitemporal land cover fractions for wetland vegetation mapping , 2012 .

[11]  Qihao Weng,et al.  Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007 , 2012 .

[12]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Thomas Hilker,et al.  Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery , 2011 .

[14]  Bo Huang,et al.  Spatiotemporal Reflectance Fusion via Sparse Representation , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Tinghua Ai,et al.  A spatial and temporal reflectance fusion model considering sensor observation differences , 2013 .

[16]  Joanne C. White,et al.  A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS , 2009 .

[17]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[18]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[19]  Michael E. Schaepman,et al.  Unmixing-Based Landsat TM and MERIS FR Data Fusion , 2008, IEEE Geoscience and Remote Sensing Letters.

[20]  Abdollah A. Jarihani,et al.  Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of "Index-then-Blend" and "Blend-then-Index" Approaches , 2014, Remote. Sens..

[21]  Paul E. Lewis,et al.  MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) , 2002, SPIE Defense + Commercial Sensing.

[22]  Tim R. McVicar,et al.  Determining temporal windows for crop discrimination with remote sensing: a case study in south-eastern Australia , 2004 .

[23]  M. Schaepman,et al.  Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics , 2009 .

[24]  Bo Huang,et al.  Unified fusion of remote-sensing imagery: generating simultaneously high-resolution synthetic spatial–temporal–spectral earth observations , 2013 .

[25]  Xiaolin Zhu,et al.  An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions , 2010 .

[26]  Bo Huang,et al.  Generating High Spatiotemporal Resolution Land Surface Temperature for Urban Heat Island Monitoring , 2013, IEEE Geoscience and Remote Sensing Letters.

[27]  Thomas Hilker,et al.  Linking ground-based to satellite-derived phenological metrics in support of habitat assessment , 2012 .

[28]  Xiaolin Zhu,et al.  Accurate mapping of forest types using dense seasonal Landsat time-series , 2014 .

[29]  F. Gao,et al.  Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data , 2014 .

[30]  D. Roy,et al.  A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin , 2008 .

[31]  Liang-pei Zhang,et al.  Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature , 2015 .

[32]  Eric P. Crist,et al.  Comparisons of the dimensionality and features of simulated Landsat-4 MSS and TM data , 1984 .

[33]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[34]  Thomas Hilker,et al.  An Improved Image Fusion Approach Based on Enhanced Spatial and Temporal the Adaptive Reflectance Fusion Model , 2013, Remote. Sens..

[35]  Jeffrey G. Masek,et al.  Estimating forest carbon fluxes in a disturbed southeastern landscape: Integration of remote sensing, forest inventory, and biogeochemical modeling , 2006 .

[36]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[37]  Devendra Singh,et al.  Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[38]  M. Tanner,et al.  A geographic information and remote sensing based model for prediction of Oncomelania hupensis habitats in the Poyang Lake area, China. , 2005, Acta tropica.

[39]  Joanne C. White,et al.  Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. , 2009 .

[40]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[41]  Zongben Xu,et al.  Spatial and Spectral Image Fusion Using Sparse Matrix Factorization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Carlos Torres-Verdín,et al.  Efficient Numerical Simulation of Axisymmetric Electromagnetic Induction Measurements Using a High-Order Generalized Extended Born Approximation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Zhiyong Wang,et al.  Synthetic Landsat data through data assimilation for winter wheat yield estimation , 2010, 2010 18th International Conference on Geoinformatics.

[44]  Tim R. McVicar,et al.  Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection , 2013 .

[45]  Gail P. Anderson,et al.  MODTRAN4 radiative transfer modeling for atmospheric correction , 1999, Optics & Photonics.

[46]  Curtis E. Woodcock,et al.  Trends in Land Cover Mapping and Monitoring , 2012 .

[47]  Wu Bingfang,et al.  ETWatch:a method of multi-resolution ET data fusion , 2011, National Remote Sensing Bulletin.

[48]  R. Kauth,et al.  The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat , 1976 .

[49]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[50]  Wu Bingfang,et al.  Method to construct high spatial and temporal resolution NDVI DataSet-STAVFM , 2011 .

[51]  K. Beurs,et al.  Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology , 2012 .

[52]  Tim R. McVicar,et al.  A simple method to improve field-level rice identification: toward operational monitoring with satellite remote sensing , 2003 .

[53]  W. Cohen,et al.  Landsat's Role in Ecological Applications of Remote Sensing , 2004 .

[54]  Bo Huang,et al.  Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[55]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[56]  Thomas Hilker,et al.  Characterizing stand-replacing disturbance in western Alberta grizzly bear habitat, using a satellite-derived high temporal and spatial resolution change sequence , 2011 .

[57]  Martha C. Anderson,et al.  Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery , 2010 .

[58]  Siamak Khorram,et al.  A comparison of SPOT and Landsat-TM data for use in conducting inventories of forest resources , 1992 .

[59]  Jin Chen,et al.  Spatiotemporal reflectance blending in a wetland environment , 2015, Int. J. Digit. Earth.

[60]  D. Singh,et al.  Evaluation of long-term NDVI time series derived from Landsat data through blending with MODIS data , 2012 .

[61]  J. C. Price How unique are spectral signatures , 1994 .

[62]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[63]  Fausto W. Acerbi-Junior,et al.  The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna , 2006 .

[64]  K. Beurs,et al.  Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data , 2014 .

[65]  Stuart R. Phinn,et al.  Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia , 2012, Remote. Sens..