Creation efficiency of nitrogen-vacancy centres in diamond

Nitrogen-vacancy (NV) colour centres in diamond are attracting growing attention due to potential applications in solid-state quantum information processing and magnetometry. Although proof-of-principle experiments have been demonstrated, further development requires the controllable production of defects with a high yield. In this paper, we experimentally show that the production efficiency of NV defects strongly depends on the ion implantation energy. This can be explained in terms of the number of vacancies produced per implanted ion and surface proximity. The dependence on ion fluence is also underlined, revealing a nonlinear regime and showing how the diamond lattice is damaged at higher fluences.

[1]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[2]  R. Hanson,et al.  Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center , 2009, 0903.3336.

[3]  F. Schmidt-Kaler,et al.  Deterministic ultracold ion source targeting the Heisenberg limit. , 2009, Physical review letters.

[4]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[5]  I. Rangelow,et al.  Single atom doping for quantum device development in diamond and silicon , 2008, 0806.2167.

[6]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[7]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[8]  F. Schmidt-Kaler,et al.  Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution , 2008 .

[9]  I. Walmsley,et al.  Creating diamond color centers for quantum optical applications , 2007, 0710.5379.

[10]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[11]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[12]  F. Jelezko,et al.  Implantation of labelled single nitrogen vacancy centers in diamond using N15 , 2005, cond-mat/0511722.

[13]  F. Jelezko,et al.  Generation of single color centers by focused nitrogen implantation , 2005, cond-mat/0505063.

[14]  James E. Butler,et al.  Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition , 2003 .

[15]  S. R. Schofield,et al.  Atomically precise placement of single dopants in si. , 2003, Physical review letters.

[16]  J. Butler,et al.  Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond , 2003 .

[17]  G. Adriaenssens,et al.  Trapping of vacancies by defects in diamond , 2001 .

[18]  H. Bukow,et al.  Microprobe as implanter for semiconductor devices , 1999 .

[19]  V. A. Dravin,et al.  Formation and characterization of graphitized layers in ion-implanted diamond , 1999 .

[20]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[21]  A. T. Collins,et al.  The annealing of interstitial-related optical centres in type II natural and CVD diamond , 1998 .

[22]  R. Kalish,et al.  Damage threshold for ion‐beam induced graphitization of diamond , 1995 .

[23]  E. Togan,et al.  Online Supplementary Information : Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008 .

[24]  D. D. Awschalom,et al.  Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .