Computer Modeling for Geothermal Systems: Predicting Carbonate and Silica Scale Formation, CO2 Breakout and H2S Exchange

This paper describes chemical equilibrium models for predicting carbonate and silica scale formation, CO2 breakout and H2S gas exchange in geothermal brine systems to high concentration and temperature. The equilibrium description is based on a minimization of the free energy of the system with solute activities described by the semiempirical equations of Pitzer (1973; 1987). The carbonate model is parameterized by appropriate osmotic, electromotive force and solubility data (T ≤ 250°C) available in binary and ternary solutions in the seawater Na–K–H–Ca–Cl–SO4–H2O system. The silica model is parameterized by solubility data to 320°C in the Na–Mg–Cl–SO4–SiO2–H2O system. The H2S model is parameterized by solubility data in the H2S–NaCl–H2O system to 320°C. The predictive capabilities of the models are demonstrated by comparison to both laboratory and field data. Examples have been given to illustrate the use of the carbonate model to predict downhole brine compositions in contact with specified formation minerals, temperature and pressure effects on carbonate scaling, the effect of scale inhibitors and breakout characteristics. Application of the silica model demonstrates the effect of temperature on silica scale formation. These illustrations show that the models can be used to reliably predict important chemical behavior in geothermal operations.

[1]  R. Mesmer,et al.  Second ionization of carbonic acid in NaCl media to 250°C , 1984 .

[2]  A. J. Ellis The solubility of calcite in carbon dioxide solutions , 1959 .

[3]  O. Maass,et al.  THE ELECTRICAL CONDUCTIVITY OF AQUEOUS SOLUTIONS OF HYDROGEN SULPHIDE AND THE STATE OF THE DISSOLVED GAS , 1932 .

[4]  H. S. Harned,et al.  The Thermodynamics of Ionized Water in Sodium Chloride Solutions , 1935 .

[5]  P. Schindler,et al.  Löslichkeiten und Aktivitätskoeffizienten von H2S in Elektrolytmischungen , 1969 .

[6]  J. Mayer The Theory of Ionic Solutions , 1950 .

[7]  J. Morse,et al.  The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C , 1993 .

[8]  John J. Carroll,et al.  The solubility of hydrogen sulphide in water from 0 to 90°C and pressures to 1 MPa , 1989 .

[9]  D. Bradley,et al.  Extension of the specific interaction model to include gas solubilities in high temperature brines , 1985 .

[10]  John H. Weare,et al.  Geochemistry of a Modern Marine Evaporite: Bocana De Virrila, Peru , 1984 .

[11]  Fumitake Yoshida,et al.  Solubility of carbon dioxide in aqueous electrolyte solutions , 1979 .

[12]  H. Rau,et al.  Equation of State for Gaseous H2S , 1982 .

[13]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration , 1988 .

[14]  T. Barrett,et al.  The solubility of hydrogen sulphide in 0–5 m NaCl solutions at 25°–95°C and one atmosphere , 1988 .

[15]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. V. effects of higher-order electrostatic terms , 1975 .

[16]  W. L. Marshall,et al.  Amorphous silica solubilities IV. Behavior in pure water and aqueous sodium chloride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350°C , 1982 .

[17]  H. S. Harned,et al.  The Ionization Constant of HCO3- from 0 to 50° , 1941 .

[18]  R. Mesmer,et al.  Carbonate equilibria in hydrothermal systems: First ionization of carbonic acid in NaCl media to 300°C , 1982 .

[19]  B. Sage,et al.  Volumetric Behavior of Hydrogen Sulfide , 1950 .

[20]  Zhenhao Duan,et al.  Prediction of the solubility of H2S in NaCl aqueous solution: an equation of state approach , 1996 .

[21]  W. J. Gist,et al.  The Action of the Grignard Reagent on Certain Fuchsones1 , 1935 .

[22]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[23]  John H. Weare,et al.  The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the NaKCaMgClSO4H2O system at temperatures below 25°C , 1990 .

[24]  Kenneth S. Pitzer,et al.  Thermodynamic Properties of Aqueous Sodium Chloride Solutions , 1984 .

[25]  Kenneth S. Pitzer,et al.  A thermodynamic model for aqueous solutions of liquid-like density , 1987 .

[26]  Kenneth S. Pitzer,et al.  Thermodynamics of aqueous magnesium and calcium bicarbonates and mixtures with chloride , 1985 .

[27]  J. Weare,et al.  A chemical equilibrium algorithm for highly non-ideal multiphase systems: Free energy minimization , 1987 .

[28]  R. Krupp,et al.  Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320°C and at saturation pressures , 1994 .

[29]  W. Kline,et al.  EDTA Removes Formation Damage at Prudhoe Bay , 1982 .

[30]  Jerry P. Greenberg,et al.  The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C , 1989 .

[31]  R. Mesmer,et al.  Thermodynamic quantities for the ionization of water in sodium chloride media to 300.degree.C , 1978 .

[32]  L. N. Plummer,et al.  The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O , 1982 .

[33]  John H. Weare,et al.  The prediction of mineral solubilities in natural waters: the NaKMgCaClSO4H2O system from zero to high concentration at 25° C , 1980 .

[34]  John H. Weare,et al.  An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bar , 1992 .

[35]  John H. Weare,et al.  An equation of state for the CH4-CO2-H2O system: II. Mixtures from 50 to 1000°C and 0 to 1000 bar , 1992 .

[36]  John H. Weare,et al.  The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California , 1986 .

[37]  A. E. Mather,et al.  Solubility of Hydrogen Sulfide in Water , 1977 .

[38]  Raymond E. Davis,et al.  The Ionization Constant of Carbonic Acid in Water and the Solubility of Carbon Dioxide in Water and Aqueous Salt Solutions from 0 to 50 , 1943 .

[39]  G. Kegeles,et al.  Thermodynamics of Concentrated Aqueous Solutions of Sodium Hydroxide1,2 , 1940 .

[40]  A. J. Ellis,et al.  The solubility of carbon dioxide above 100 degrees C in water and in sodium chloride solutions , 1963 .

[41]  Kenneth S. Pitzer,et al.  High-temperature thermodynamic properties of aqueous sodium sulfate solutions , 1981 .

[42]  O. Maass,et al.  The Solubility of Hydrogen Sulphide in Water from the Vapor Pressures of the Solutions , 1932 .

[43]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[44]  M. H. Lietzke,et al.  ELECTROMOTIVE FORCE STUDIES IN AQUEOUS SOLUTIONS AT ELEVATED TEMPERATURES. I. THE STANDARD POTENTIAL OF THE SILVER-SILVER CHLORIDE ELECTRODE1 , 1960 .

[45]  H. S. Harned,et al.  The First Ionization of Carbonic Acid in Aqueous Solutions of Sodium Chloride , 1945 .

[46]  E. Clarke,et al.  AQUEOUS NONELECTROLYTE SOLUTIONS. PART VIII. DEUTERIUM AND HYDROGEN SULFIDES SOLUBILITIES IN DEUTERIUM OXIDE AND WATER. , 1971 .

[47]  A. J. Ellis The solubility of carbon dioxide in water at high temperatures , 1959 .