Influence of wood extractives on two-component polyurethane adhesive for structural hardwood bonding

ABSTRACT When bonding wood for structural applications, the wood–adhesive bond is influenced by a variety of factors. Besides the physical and mechanical properties of wood species, their chemical composition, e.g. wood extractives, can play a role in bonding wooden surfaces. A two-component polyurethane system (2C PUR) was chosen to better adapt to the current adhesion problem. The influence of extractives on crosslinking was determined by Attenuated Total Reflection-Fourier Transform Infrared Spectrometer (ATR-FTIR) and on the rheological behavior in terms of gel point and storage modulus. Therefore, 2C PUR was mixed with 10% of eight common wood extractives separately. Furthermore, the mechanical properties of beech wood (Fagus sylvatica L.) bonded with extractive enriched adhesive were tested by means of tensile shear strength tests and evaluation of wood failure. These results of ATR-FTIR clearly show that the majority of crosslinking was terminated after 12 hr. Acetic acid and linoleic acid expedited the isocyanate conversion during the first 2.5 hr. The curing in terms of gel point and storage modulus of 2C PUR was accelerated by starch, gallic acid, linoleic acid, and acetic acid. Heptanal, pentanal, 3-carene, and limonene decelerated the curing. All extractives lowered the storage modulus determined after 12 hr. The bonding of beech wood with extractive–adhesive blends showed a slight decrease of the mechanical properties, with the exception of a marginal increase in the case of linoleic acid and pentanal. In summary, it can be said that 2C PUR is sensitive to the influence of wood extractives and can therefore be partly held responsible for adhesion problems occurring when extractives in surface-wide and higher contents are available.

[1]  E. Roffael Significance of wood extractives for wood bonding , 2015, Applied Microbiology and Biotechnology.

[2]  Simon Aicher,et al.  Materials and Joints in Timber Structures , 2014 .

[3]  Stefan Winter,et al.  Bonding of Various Wood Species – Studies about Their Applicability in Glued Laminated Timber , 2014 .

[4]  R. Alén,et al.  OVERVIEW OF ANALYTICAL PROCEDURES FOR FATTY AND RESIN ACIDS IN THE PAPERMAKING PROCESS , 2012 .

[5]  C. Eger,et al.  Wear-resistant and transparent acrylate-based coating with highly filled nanosilica particles , 2010 .

[6]  Robert J. Ross,et al.  Wood handbook : wood as an engineering material , 2010 .

[7]  Magdalena Sterley,et al.  The Effect of Wood Extractive Content on Glue Adhesion and Surface Wettability of Wood , 2007 .

[8]  E. Roffael Abgabe von flüchtigen organischen Säuren aus Holzspänen und Holzspanplatten , 1989, Holz als Roh- und Werkstoff.

[9]  M. Paulitsch,et al.  Inhaltstoffe von Nadeln, Rinde und Holz der Fichte und Kiefer und ihr Einfluß auf die Eigenschaften daraus hergestellter Spanplatten , 1974, Holz als Roh- und Werkstoff.

[10]  E. Roffael,et al.  Extraktstoffe in Eiche und ihr Einfluß auf die Verleimbarkeit mit alkalischen Phenol-Formaldehydharzen , 1974, Holz als Roh- und Werkstoff.

[11]  R. Popper,et al.  Einfluss des Extraktstoffanteils ausgewählter fremdländischer Holzarten auf deren Gleichgewichtsfeuchte , 2006, Holz als Roh- und Werkstoff.

[12]  Herbert Sixta,et al.  Handbook of Pulp , 2006 .

[13]  D. Kretschmann Velcro mechanics in wood , 2003, Nature materials.

[14]  M. Kuo,et al.  Influence of extractives on wood gluing and finishing: a review , 1988 .

[15]  C. M. Chen Effect of extractive removal on adhesion and wettability of some tropical woods. , 1970 .