Prediction in complex systems: the case of the international trade network

Predicting the future evolution of complex systems is one of the main challenges in complexity science. Based on a current snapshot of a network, link prediction algorithms aim to predict its future evolution. We apply here link prediction algorithms to data on the international trade between countries. This data can be represented as a complex network where links connect countries with the products that they export. Link prediction techniques based on heat and mass diffusion processes are employed to obtain predictions for products exported in the future. These baseline predictions are improved using a recent metric of country fitness and product similarity. The overall best results are achieved with a newly developed metric of product similarity which takes advantage of causality in the network evolution.

[1]  Thorsten von Eicken,et al.  技術解説 IEEE Computer , 1999 .

[2]  Sophie Ahrens,et al.  Recommender Systems , 2012 .

[3]  Ramesh R. Sarukkai,et al.  Link prediction and path analysis using Markov chains , 2000, Comput. Networks.

[4]  L. Pietronero,et al.  How the Taxonomy of Products Drives the Economic Development of Countries , 2014, PloS one.

[5]  James Bennett,et al.  The Netflix Prize , 2007 .

[6]  Alexandre Vidmer,et al.  Information filtering via hybridization of similarity preferential diffusion processes , 2013, ArXiv.

[7]  Luciano Pietronero,et al.  An Overview of the New Frontiers of Economic Complexity , 2014 .

[8]  G. Maugin THERMOSTATICS AND THERMODYNAMICS , 1999 .

[9]  Yi-Cheng Zhang,et al.  The reinforcing influence of recommendations on global diversification , 2011, 1106.0330.

[10]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[11]  Giuseppe Di Battista,et al.  26 Computer Networks , 2004 .

[12]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[13]  Yi-Cheng Zhang,et al.  Heat conduction process on community networks as a recommendation model. , 2007, Physical review letters.

[14]  César A. Hidalgo,et al.  The building blocks of economic complexity , 2009, Proceedings of the National Academy of Sciences.

[15]  Giulio Cimini,et al.  Emergence of Scale-Free Leadership Structure in Social Recommender Systems , 2011, PloS one.

[16]  César A. Hidalgo,et al.  The Product Space Conditions the Development of Nations , 2007, Science.

[17]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Yi-Cheng Zhang,et al.  Adaptive model for recommendation of news , 2009, ArXiv.

[19]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[20]  Alexandre Vidmer,et al.  Information filtering by similarity-preferential diffusion processes , 2014 .

[21]  James E. Rauch,et al.  Networks Versus Markets in International Trade , 1996 .

[22]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[23]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[24]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[25]  Yi-Cheng Zhang,et al.  Bipartite network projection and personal recommendation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Robert A. Legenstein,et al.  Combining predictions for accurate recommender systems , 2010, KDD.

[27]  B. Balassa Trade Liberalisation and “Revealed” Comparative Advantage , 1965 .

[28]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .

[29]  Chris Arney,et al.  The Atlas of Economic Complexity: Mapping Paths to Prosperity , 2012 .

[30]  Marián Boguñá,et al.  Topology of the world trade web. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Jason Hwang,et al.  What You Export Matters , 2005 .

[32]  K. Kaski,et al.  The International Trade Network: weighted network analysis and modelling , 2007, 0707.4343.

[33]  Giorgio Fagiolo,et al.  The international-trade network: gravity equations and topological properties , 2009, 0908.2086.

[34]  Jan Tinbergen,et al.  Shaping the world economy , 1963 .

[35]  Rynson W. H. Lau,et al.  Knowledge and Data Engineering for e-Learning Special Issue of IEEE Transactions on Knowledge and Data Engineering , 2008 .

[36]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[38]  Yi-Cheng Zhang,et al.  Solving the apparent diversity-accuracy dilemma of recommender systems , 2008, Proceedings of the National Academy of Sciences.

[39]  E. Kick,et al.  Structural Position in the World System and Economic Growth, 1955-1970: A Multiple-Network Analysis of Transnational Interactions , 1979, American Journal of Sociology.

[40]  Peter J. Klenow,et al.  The Variety and Quality of a Nation's Exports , 2005 .

[41]  Guido Caldarelli,et al.  A New Metrics for Countries' Fitness and Products' Complexity , 2012, Scientific Reports.

[42]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[43]  Yehuda Koren,et al.  Lessons from the Netflix prize challenge , 2007, SKDD.

[44]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[45]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[46]  Hsuan-Tien Lin,et al.  Learning From Data , 2012 .

[47]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[48]  Guido Caldarelli,et al.  Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products , 2013, PloS one.

[49]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.