The dielectric anomaly as the insulator-metal transition is approached from the insulating side

Abstract The dielectric behaviour of monovalent ‘metallic’ impurities is considered as a function of the impurity concentration N as N approaches the critical concentration N c for the onset of metallic behaviour. The different types of screening, namely (1) metallic (Thomas–Fermi, Lindhard), (2) classical semiconductor (Debye–Huckel), and (3) insulator (Penn–Hubbard, Clausius–Mossotti), are briefly reviewed. For the insulator case the Herzfeld criterion, based on the polarization catastrophe resulting from the Clausius–Mossotti relationship, for distinguishing between insulators and metals is discussed. The available experimental dielectric constant data versus doping for metal–ammonia solutions and n-type Si and Ge are reviewed. The reasons for the striking upward deviation from Clausius–Mossotti behaviour for the Si: As data are explored and various alternative approaches are considered. Several theories of the dielectric enhancement are reviewed and a new continuum model calculation of the donor polar...

[1]  M. Capizzi,et al.  Optical measurements of the approach to the anderson transition , 1980 .

[2]  T. Castner Donor-polarizability enhancement as the insulator-metal transition is approached from the insulating side , 1980 .

[3]  L. Moberly,et al.  The low-frequency, low-temperature dielectric behavior of n-type germanium below the insulator-metal transition , 1980 .

[4]  T. Castner Self-consistent calculation of the enhanced donor polarizability below the insulator-metal transition☆ , 1979 .

[5]  T. M. Rice,et al.  Observation of a donor exciton band in silicon , 1979 .

[6]  G. Neumark Analysis of the pretransition range of the metal-insulator transition in doped semiconductors , 1979 .

[7]  T. J. Burgess,et al.  Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures , 1978 .

[8]  M. Takeshima Unified treatment of dielectric enhancement and conduction-electron screening in the Mott transition in semiconductors , 1978 .

[9]  P. Townsend Infrared absorption in phosphorus doped silicon and the D- band , 1978 .

[10]  P. Edwards,et al.  Universality aspects of the metal-nonmetal transition in condensed media , 1978 .

[11]  A. Hiraki,et al.  Dielectric anomaly in amorphous Si100-xAux system , 1977 .

[12]  A. Ghazali,et al.  Insulating side of the metal-insulator transition in doped semiconductors and the dielectric-constant enhancement , 1976 .

[13]  O. P. Puri,et al.  Mott transition in multivalley semiconductors , 1975 .

[14]  G. Salinger,et al.  Dielectric Anomaly and the Metal-Insulator Transition in n-Type Silicon , 1975 .

[15]  J. Golka Absorption of infrared radiation by ionized donor pairs in GaAs, InP and CdTe , 1975 .

[16]  T. Castner,et al.  Polarizabilities of shallow donors in silicon , 1974 .

[17]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[18]  F. Stern Low-temperature limit of screening length in semiconductors , 1974 .

[19]  K. Berggren Addendum: The Herzfeld theory of metallization. Application to doped semiconductors, electron‐hole liquids in semiconductors, and expanded states of simple metals , 1974 .

[20]  M. Pollak,et al.  Correlation Effects in Hopping Conduction: A Treatment in Terms of Multi-Electron Transitions, , 1974 .

[21]  K. Berggren,et al.  Metal-to-Nonmetal Transition in n -Type Many-Valley Semiconductors , 1973 .

[22]  M. Ross On the Herzfeld Theory of Metallization. Application to Rare Gases, Alkali Halides, and Diatomic Molecules , 1972 .

[23]  G. Neumark Concentration and Temperature Dependence of Impurity-to-Band Activation Energies , 1972 .

[24]  M. Nightingale,et al.  Dielectric Screening and the Mott Transition in Many-Valley Semiconductors , 1971 .

[25]  K. Colbow,et al.  Screening of bound states in semiconductors , 1970 .

[26]  N. F. Mott,et al.  Conduction in non-Crystalline systems: IV. Anderson localization in a disordered lattice , 1970 .

[27]  R. A. Faulkner Higher Donor Excited States for Prolate-Spheroid Conduction Bands: A Reevaluation of Silicon and Germanium , 1969 .

[28]  Nevill Mott,et al.  Conduction in glasses containing transition metal ions , 1968 .

[29]  D. Mahaffey,et al.  Microwave Dielectric Constants of Sodium-Ammonia Solutions , 1968 .

[30]  J. Drabble Insulators, Semiconductors and Metals: Quantum Theory of Molecules and Solids , 1967 .

[31]  W. D. Compton,et al.  Compensation Dependence of Impurity Conduction in Antimony-Doped Germanium , 1965 .

[32]  Shoji Tanaka,et al.  Impurity Conduction inp-Type Silicon at Microwave Frequencies , 1963 .

[33]  Theodore H. Geballe,et al.  Low-Frequency Conductivity Due to Hopping Processes in Silicon , 1961 .

[34]  E. Abrahams,et al.  Impurity Conduction at Low Concentrations , 1960 .

[35]  D. Frood A Dielectric Approach to Impurity Conduction , 1960 .

[36]  H. Ehrenreich,et al.  Self-Consistent Field Approach to the Many-Electron Problem , 1959 .

[37]  H. Fritzsche Resistivity and hall coefficient of antimony-doped germanium at low temperatures , 1958 .

[38]  H. Y. Fan,et al.  Effect of Neutral Impurity on the Microwave Conductivity and Dielectric Constant of Germanium at Low Temperatures , 1956 .

[39]  N F Mott,et al.  The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals , 1949 .

[40]  T. E. Allibone,et al.  Advances in Electronics , 1949, Nature.

[41]  C. Böttcher Die Druckabhängigkeit Der Molekularpolarisation Von Dipolfreien Gasen Und Flüssigkeiten , 1942 .

[42]  J. Kirkwood On the Theory of Dielectric Polarization , 1936 .

[43]  H. Hasse The polarizability of the helium atom and the lithium ion , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  K. Herzfeld,et al.  On Atomic Properties which make an Element a Metal , 1927 .

[45]  M. Pollak,et al.  Evidence for correlated hopping in impurity conduction at moderate impurity concentrations , 1977 .

[46]  J. C. Slater Insulators, semiconductors and metals , 1967 .

[47]  Nathan Wiser,et al.  Dielectric Constant with Local Field Effects Included , 1963 .