Polycondensation-Involved Melanin-like Polymers for Enhanced Solar Energy Utilization

[1]  Gaigai Duan,et al.  Cellulose‐based Interfacial Solar Evaporators: Structural Regulation and Performance Manipulation , 2023, Advanced Functional Materials.

[2]  W. Zhang,et al.  Manipulating the antioxidative capacity of melanin-like nanoparticles by involving condensation polymerization , 2023, Science China Chemistry.

[3]  Xin Jia,et al.  Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy , 2023, Chinese Journal of Polymer Science.

[4]  Gaigai Duan,et al.  A robust and 3D-printed solar evaporator based on naturally occurring molecules. , 2023, Science bulletin.

[5]  Jing Lin,et al.  Biosynthesis of Melanin Nanoparticles for Photoacoustic Imaging Guided Photothermal Therapy. , 2022, Small.

[6]  W. Zhang,et al.  A bioinspired strategy towards UV absorption enhancement of melanin-like polymers for sun protection , 2022, CCS Chemistry.

[7]  Gaigai Duan,et al.  Degradable and Recyclable Solar Desalination Membranes Based on Naturally Occurring Building Blocks , 2022, Chemistry of Materials.

[8]  Chuncheng Chen,et al.  Artificial Photosynthesis of H2O2 through Reversible Photoredox Transformation between Catechol and o-Benzoquinone on Polydopamine-Coated CdS , 2022, ACS Catalysis.

[9]  Fangfei Liu,et al.  Polydopamine-based polysaccharide materials for water treatment , 2022, Cellulose.

[10]  Zhipeng Gu,et al.  Molecular Hyperpolarization-Directed Photothermally Enhanced Melanin-Inspired Polymers , 2022, Macromolecules.

[11]  Ting Huang,et al.  Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment , 2022, Chinese Journal of Polymer Science.

[12]  Jincui Gu,et al.  Biomass-Derived Nanostructured Coatings Based on Cellulose Nanofibers-Melanin Hybrids Toward Solar-Enabled Multifunctional Energy Management , 2022, SSRN Electronic Journal.

[13]  Hui Song,et al.  Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives , 2022, ACS Energy Letters.

[14]  J. Jewell,et al.  National growth dynamics of wind and solar power compared to the growth required for global climate targets , 2021, Nature Energy.

[15]  Gaigai Duan,et al.  Flexible Polydopamine Bioelectronics , 2021, Advanced Functional Materials.

[16]  Gaigai Duan,et al.  Emergence of melanin-inspired supercapacitors , 2021 .

[17]  F. Agblevor,et al.  Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals , 2021, Nature Communications.

[18]  Gaigai Duan,et al.  Boosting solar steam generation by photothermal enhanced polydopamine/wood composites , 2021 .

[19]  Gaigai Duan,et al.  A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. , 2021, ACS applied materials & interfaces.

[20]  Zhipeng Gu,et al.  Regulating the absorption spectrum of polydopamine , 2020, Science Advances.

[21]  F. Novotný,et al.  Multifunctional Visible‐Light Powered Micromotors Based on Semiconducting Sulfur‐ and Nitrogen‐Containing Donor–Acceptor Polymer , 2020, Advanced Functional Materials.

[22]  F. Soavi,et al.  Electronic Transport in the Biopigment Sepia Melanin. , 2020, ACS applied bio materials.

[23]  Tong Wu,et al.  Photothermal-enhanced synthetic melanin inks for near-infrared imaging , 2020 .

[24]  M. Buehler,et al.  Melanin biopolymers: tailoring chemical complexity for materials design. , 2019, Angewandte Chemie.

[25]  Peng Yang,et al.  Tailoring Synthetic Melanin Nanoparticles for Enhanced Photothermal Therapy. , 2019, ACS applied materials & interfaces.

[26]  M. Kang,et al.  Melanin–Perovskite Composites for Photothermal Conversion , 2019, Advanced Energy Materials.

[27]  F. Soavi,et al.  Melanin: A Greener Route To Enhance Energy Storage under Solar Light , 2019, ACS omega.

[28]  K. Shankar,et al.  Melanin-based electronics: From proton conductors to photovoltaics and beyond. , 2018, Biosensors & bioelectronics.

[29]  Yonglin He,et al.  Progress on Photothermal Conversion in the Second NIR Window Based on Conjugated Polymers , 2018, Asian Journal of Organic Chemistry.

[30]  Kwok Hoe Chan,et al.  Hybrid Photothermal Pyroelectric and Thermogalvanic Generator for Multisituation Low Grade Heat Harvesting , 2018, Advanced Energy Materials.

[31]  Haeshin Lee,et al.  Progressive fuzzy cation-π assembly of biological catecholamines , 2018, Science Advances.

[32]  Peng Yang,et al.  Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. , 2017, Biomaterials.

[33]  W. Hu,et al.  Intermolecular Charge-Transfer Interactions Facilitate Two-Photon Absorption in Styrylpyridine-Tetracyanobenzene Cocrystals. , 2017, Angewandte Chemie.

[34]  R. Halaban,et al.  Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure , 2015, Science.

[35]  Lehui Lu,et al.  Dopamine‐Melanin Colloidal Nanospheres: An Efficient Near‐Infrared Photothermal Therapeutic Agent for In Vivo Cancer Therapy , 2013, Advanced materials.

[36]  Pooi See Lee,et al.  Polydopamine spheres as active templates for convenient synthesis of various nanostructures. , 2013, Small.

[37]  G. Lu,et al.  Sp2 C‐Dominant N‐Doped Carbon Sub‐micrometer Spheres with a Tunable Size: A Versatile Platform for Highly Efficient Oxygen‐Reduction Catalysts , 2013, Advanced materials.

[38]  In Taek Song,et al.  Non‐Covalent Self‐Assembly and Covalent Polymerization Co‐Contribute to Polydopamine Formation , 2012 .

[39]  Tian Lu,et al.  Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. , 2012, Journal of molecular graphics & modelling.

[40]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[41]  Dana N. Peles,et al.  The red and the black. , 2010, Accounts of chemical research.