A second-moment approach for direct probabilistic model updating in structural dynamics

Abstract Discrepancies between experimentally measured data and computational predictions are unavoidable for structural dynamic systems. Model updating methods have been developed over the past three decades to reduce this gap. Well established model updating methods exist when both the model and experimental measurements are deterministic in nature. However in reality, experimental results may contain uncertainty, for example arising due to unknown experimental errors, or variability in nominally identical structures. Over the past two decades probabilistic approaches have been developed to incorporate uncertainties in computational models. In this paper, the natural frequencies and the eigenvectors of the system are measured and assumed to be uncertain. A random matrix approach is proposed and closed-form expressions are derived for the mean matrix and the covariance matrix of the updated stiffness matrix. A perturbation technique is used to obtain a usable expression for the covariance matrix. The new method is illustrated by three numerical examples highlighting the influence of the eigenfrequency uncertainties on the mean matrix and the influence of the eigenvector uncertainties on the covariance matrix.

[1]  Vikas Arora,et al.  Damped model updating using complex updating parameters , 2009 .

[2]  C. Loan,et al.  Approximation with Kronecker Products , 1992 .

[3]  Michel Verhaegen,et al.  Experimental validation of a finite-element model updating procedure , 2007 .

[4]  A. Kiureghian,et al.  Aleatory or epistemic? Does it matter? , 2009 .

[5]  M. Friswell,et al.  Uncertainty identification by the maximum likelihood method , 2005 .

[6]  S. Adhikari Rates of change of eigenvalues and eigenvectors in damped dynamic system , 1999 .

[7]  François M. Hemez,et al.  Bypassing Numerical Difficulties Associated with Updating Simultaneously Mass and Stiffness Matrices , 1995 .

[8]  José L. Zapico,et al.  Finite element model updating of a small steel frame using neural networks , 2008 .

[9]  Yongxin Yuan,et al.  A new model updating method for damped structural systems , 2009 .

[10]  C. Loan The ubiquitous Kronecker product , 2000 .

[11]  Sondipon Adhikari,et al.  Distributed parameter model updating using the Karhunen–Loève expansion , 2010 .

[12]  M. Chu,et al.  Updating quadratic models with no spillover effect on unmeasured spectral data , 2007 .

[13]  B. Datta,et al.  An optimization technique for damped model updating with measured data satisfying quadratic orthogonality constraint , 2009 .

[14]  Yu-Ju Chen,et al.  Direct Updating Method for Structural Models Based on Orthogonality Constraints , 2009 .

[15]  M. Friswell,et al.  Perturbation methods for the estimation of parameter variability in stochastic model updating , 2008 .

[16]  Cinzia Viroli,et al.  Finite mixtures of matrix normal distributions for classifying three-way data , 2011, Stat. Comput..

[17]  F. Hemez,et al.  Updating finite element dynamic models using an element-by-element sensitivity methodology , 1993 .

[18]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[19]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[20]  M. Chu,et al.  Spillover Phenomenon in Quadratic Model Updating , 2008 .

[21]  Rongming Lin,et al.  Model updating of damped structures using FRF data , 2006 .

[22]  C. Viroli Classifying three-way data through Matrix-Normal Mixtures , 2010 .

[23]  Matthew M. Lin,et al.  Inverse mode problems for real and symmetric quadratic models , 2010 .

[24]  Michael I. Friswell,et al.  The adjustment of structural parameters using a minimum variance estimator , 1989 .

[25]  J. Beck,et al.  UPDATING MODELS AND THEIR UNCERTAINTIES. II: MODEL IDENTIFIABILITY. TECHNICAL NOTE , 1998 .

[26]  Yongxin Yuan,et al.  An iterative method for solving finite element model updating problems , 2011 .

[27]  J. Mottershead,et al.  Interval model updating with irreducible uncertainty using the Kriging predictor , 2011 .

[28]  Gerhart I. Schuëller,et al.  A stochastic model updating technique for complex aerospace structures , 2011 .

[29]  Sondipon Adhikari,et al.  Calculation of derivative of complex modes using classical normal modes , 2000 .

[30]  G. W. Stewart,et al.  Stochastic Perturbation Theory , 1990, SIAM Rev..

[31]  John E. Mottershead,et al.  Stochastic model updating: Part 1—theory and simulated example , 2006 .

[32]  M. Friswell,et al.  Direct Updating of Damping and Stiffness Matrices , 1998 .

[33]  J. D. Collins,et al.  Statistical Identification of Structures , 1973 .

[34]  S. Mahadevan,et al.  Calibration and Uncertainty Analysis for Computer Simulations with Multivariate Output , 2008 .

[35]  Menahern Baruch,et al.  Optimal Weighted Orttiogonalization of Measured Modes , 1978 .

[36]  Yuen-Cheng Kuo,et al.  New Methods for Finite Element Model Updating Problems , 2006 .

[37]  Wen-Wei Lin,et al.  Solutions of the Partially Described Inverse Quadratic Eigenvalue Problem , 2006, SIAM J. Matrix Anal. Appl..

[38]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[39]  Jm M. Ko,et al.  An improved perturbation method for stochastic finite element model updating , 2008 .

[40]  Yunfeng Cai,et al.  Solutions to a quadratic inverse eigenvalue problem , 2009 .

[41]  Huajun Li,et al.  Simultaneous Mass, Damping, and Stiffness Updating for Dynamic Systems , 2007 .

[42]  Vicente J. Romero,et al.  Calibration and Uncertainty Analysis for Computer Simulations with Multivariate Output , 2008 .

[43]  Jon D. Collins,et al.  Statistical Identification of Structures , 1973 .

[44]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[45]  G. Stewart Stochastic Perturbation Theory , 1990, SIAM Rev..

[46]  Xi-Yan Hu,et al.  Elsevier Editorial System(tm) for Journal of Computational and Applied Mathematics Manuscript Draft Title: New Symmetry Preserving Method for Optimal Correction of Damping and Stiffness Matrices Using Measured Modes New Symmetry Preserving Method for Optimal Correction of Damping and Stiffness Matri , 2022 .

[47]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[48]  Wei-Xin Ren,et al.  Response Surface―Based Finite-Element-Model Updating Using Structural Static Responses , 2011 .

[49]  François M. Hemez Uncertainty Quantification and the Verification and Validation of Computational Models , 2005 .

[50]  F. Hemez,et al.  REVIEW AND ASSESSMENT OF MODEL UPDATING FOR NON-LINEAR, TRANSIENT DYNAMICS , 2001 .

[51]  B. Datta,et al.  Quadratic Inverse Eigenvalue Problems, Active Vibration Control and Model Updating , 2009 .

[52]  Yeong-Bin Yang,et al.  A new direct method for updating structural models based on measured modal data , 2009 .

[53]  Pierre Ladevèze,et al.  An Updating Method for Structural Dynamics Models with Uncertainties , 2007 .

[54]  S. Rahmatalla,et al.  Integrated mathematical forms for update of physical parameter matrices of damped dynamic system , 2011 .

[55]  Y. J. Chen,et al.  DIRECT VERSUS ITERATIVE MODEL UPDATING METHODS FOR MASS AND STIFFNESS MATRICES , 2010 .

[56]  P. Dutilleul The mle algorithm for the matrix normal distribution , 1999 .

[57]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[58]  Hao Liu,et al.  New model updating method for damped structural systems , 2009, Comput. Math. Appl..

[59]  Jean-Pierre Jaspart,et al.  Calibration of a finite element model for isolated bolted end-plate steel connections , 1997 .

[60]  R. Fox,et al.  Rates of change of eigenvalues and eigenvectors. , 1968 .