Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

The authors would like to thank the referee for the thoughtful report, which greatly improved the manuscript. The authors would also like to thank Lisa Prato and Larissa Nofi for IGRINS training, and Heidi Larson, Jason Sanborn, and Andrew Hayslip for operating the DCT during our observations. We would also like to thank Jen Winters, Jonathan Irwin, Paul Dalba, Mark Veyette, Eunkyu Han, and Andrew Vanderburg for useful discussions and helpful comments on this work. Some of this work was supported by the NASA Exoplanet Research Program (XRP) under grant No. NNX15AG08G issued through the Science Mission Directorate.These results made use of the Lowell Observatory's Discovery Channel Telescope, supported by Discovery Communications, Inc., Boston University, the University of Maryland, the University of Toledo and Northern Arizona University; the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation under grant AST-1229522, of the University of Texas at Austin, and of the Korean GMT Project of KASI; data taken at The McDonald Observatory of The University of Texas at Austin; and data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. (NNX15AG08G - NASA Exoplanet Research Program (XRP); Discovery Communications, Inc.; Boston University; University of Maryland; University of Toledo; Northern Arizona University; AST-1229522 - US National Science Foundation; University of Texas at Austin; Korean GMT Project of KASI; NASA; NSF)

[1]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[2]  Gilles Chabrier,et al.  Evolution of low-mass star and brown dwarf eclipsing binaries , 2007, 0707.1792.

[3]  Christoph Baranec,et al.  Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664 , 2017, 1707.07001.

[4]  Saurav Dhital,et al.  THE EFFECTS OF CLOSE COMPANIONS (AND ROTATION) ON THE MAGNETIC ACTIVITY OF M DWARFS , 2012, 1205.6806.

[5]  A. West,et al.  A FIRST LOOK AT ROTATION IN INACTIVE LATE-TYPE M DWARFS , 2008, 0812.1220.

[6]  I. Ribas,et al.  The effect of activity on stellar temperatures and radii , 2007, 0711.3523.

[7]  A revision of the solar neighbourhood metallicity distribution , 2001, astro-ph/0107077.

[8]  Angela P. Massey,et al.  THEORETICAL LIMITS ON MAGNETIC FIELD STRENGTHS IN LOW-MASS STARS , 2015, 1512.05692.

[9]  S. Baliunas,et al.  A Relationship between Mean Rotation Period in Lower Main-Sequence Stars and Its Observed Range , 1996 .

[10]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[11]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[12]  The dependence of differential rotation on temperature and rotation , 2004, astro-ph/0410575.

[13]  Russel J. White,et al.  A 3D SEARCH FOR COMPANIONS TO 12 NEARBY M DWARFS , 2015, 1501.05012.

[14]  Eric Gaidos,et al.  SPECTRO-THERMOMETRY OF M DWARFS AND THEIR CANDIDATE PLANETS: TOO HOT, TOO COOL, OR JUST RIGHT? , 2013, 1311.0003.

[15]  Usa,et al.  The inflated radii of M-dwarfs in the Pleiades , 2018, 1802.04288.

[16]  Alan T. Tokunaga,et al.  iSHELL: a construction, assembly and testing , 2016, Astronomical Telescopes + Instrumentation.

[17]  G. Feiden,et al.  SELF-CONSISTENT MAGNETIC STELLAR EVOLUTION MODELS OF THE DETACHED, SOLAR-TYPE ECLIPSING BINARY EF AQUARII , 2012, 1210.6177.

[18]  P. Cargile,et al.  THE SOLAR NEIGHBORHOOD. XXXVII. THE MASS–LUMINOSITY RELATION FOR MAIN-SEQUENCE M DWARFS , 2016, 1608.04775.

[19]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[20]  G. Ruediger,et al.  Differential rotation and meridional flow on the lower zero‐age main sequence: Reynolds stress versus barocinic flow , 2011, 1110.4757.

[21]  J. Jenkins,et al.  STARSPOT DISTRIBUTIONS ON FULLY CONVECTIVE M DWARFS: IMPLICATIONS FOR RADIAL VELOCITY PLANET SEARCHES , 2015, 1509.05284.

[22]  Kolby L. Weisenburger,et al.  AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS , 2015, 1509.01590.

[23]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[24]  Russel J. White,et al.  STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS , 2012, 1208.2431.

[25]  C. Moutou,et al.  SPIRou Input Catalogue: global properties of 440 M dwarfs observed with ESPaDOnS at CFHT , 2017, 1712.04490.

[26]  M. J. Bayarri,et al.  Calibration of ρ Values for Testing Precise Null Hypotheses , 2001 .

[27]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .

[28]  D. S. Hall,et al.  Learning about stellar dynamos from long-term photometry of starspots , 1991 .

[29]  P. Berlind,et al.  LSPM J1112+7626: DETECTION OF A 41 DAY M-DWARF ECLIPSING BINARY FROM THE MEARTH TRANSIT SURVEY , 2011, 1109.2055.

[30]  A. Cameron,et al.  Magnetic activity on AB Doradus : temporal evolution of star-spots and differential rotation from 1988 to 1994 , 2006, astro-ph/0610259.

[31]  J. Barnes,et al.  Calculations of periodicity from Hα profiles of Proxima Centauri , 2016, 1608.07834.

[32]  I. Neill Reid,et al.  High-Resolution Spectroscopy of Ultracool M Dwarfs , 2002, astro-ph/0204285.

[33]  Adam L. Kraus,et al.  THE MASS–RADIUS(–ROTATION?) RELATION FOR LOW-MASS STARS , 2010, 1011.2757.

[34]  J. Beuzit,et al.  Mass-radius relation of low and very low-mass stars revisited with the VLTI , 2009, 0906.0602.

[35]  B. Sipocz,et al.  Rotation periods for very low mass stars in Praesepe , 2011, 1101.1967.

[36]  P. Bodenheimer,et al.  The End of the Main Sequence , 1997 .

[37]  E. Parker Hydromagnetic Dynamo Models , 1955 .

[38]  I. Neill Reid,et al.  IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 PC. I. SPECTROSCOPIC OBSERVATIONS , 2009, 0904.3323.

[39]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[40]  D. Mullan,et al.  Magnetic Modeling of Inflated Low-mass Stars Using Interior Fields No Larger than ∼10 kG , 2017, 1708.06994.

[41]  D. Charbonneau,et al.  TRIGONOMETRIC PARALLAXES FOR 1507 NEARBY MID-TO-LATE M DWARFS , 2013, 1312.3241.

[42]  P. Berlind,et al.  THE Hα EMISSION OF NEARBY M DWARFS AND ITS RELATION TO STELLAR ROTATION , 2016, 1611.03509.

[43]  S. V. Jeffers,et al.  The CARMENES search for exoplanets around M dwarfs. High-resolution optical and near-infrared spectroscopy of 324 survey stars , 2017, 1711.06576.

[44]  In-Soo Yuk,et al.  300 nights of science with IGRINS at McDonald Observatory , 2016, Astronomical Telescopes + Instrumentation.

[45]  J. Valenti,et al.  The Large-Scale Axisymmetric Magnetic Topology of a Very-Low-Mass Fully Convective Star , 2006, Science.

[46]  D. Ciardi,et al.  Stellar diameters and temperatures - V. 11 newly characterized exoplanet host stars , 2013, 1312.1792.

[47]  Amanda J. Bayless,et al.  2MASS J05162881+2607387: A New Low-mass Double-lined Eclipsing Binary , 2006 .

[48]  M. Pinsonneault,et al.  ROTATION IN THE PLEIADES WITH K2. II. MULTIPERIOD STARS , 2016, 1606.00055.

[49]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[50]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[51]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[52]  R. Jackson,et al.  The radii of M-dwarfs in the young open cluster NGC 2516 , 2009, 0908.1406.

[53]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[54]  M. Pinsonneault,et al.  ROTATION IN THE PLEIADES WITH K2. I. DATA AND FIRST RESULTS , 2016, 1606.00052.

[55]  F. Allard,et al.  A Physically Motivated and Empirically Calibrated Method to Measure the Effective Temperature, Metallicity, and Ti Abundance of M Dwarfs , 2017, 1710.10259.

[56]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[57]  D. Schneider,et al.  THE SDSS-III APOGEE RADIAL VELOCITY SURVEY OF M DWARFS. I. DESCRIPTION OF THE SURVEY AND SCIENCE GOALS , 2013, 1307.8121.

[58]  F. Allard,et al.  THE PHYSICAL MECHANISM BEHIND M DWARF METALLICITY INDICATORS AND THE ROLE OF C AND O ABUNDANCES , 2016, 1605.04904.

[59]  Phil Gregory Bayesian Logical Data Analysis for the Physical Sciences: References , 2005 .

[60]  Jeong-Yeol Han,et al.  Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer) , 2014, Astronomical Telescopes and Instrumentation.

[61]  Mercedes Lopez-Morales,et al.  On the Correlation between the Magnetic Activity Levels, Metallicities, and Radii of Low-Mass Stars , 2007, astro-ph/0701702.

[62]  David Charbonneau,et al.  TRANSIT DETECTION IN THE MEarth SURVEY OF NEARBY M DWARFS: BRIDGING THE CLEAN-FIRST, SEARCH-LATER DIVIDE , 2012, 1206.4715.

[63]  I. Ribas,et al.  THE EFFECT OF MAGNETIC ACTIVITY ON LOW-MASS STARS IN ECLIPSING BINARIES , 2010, 1005.5720.

[64]  Philip S. Muirhead,et al.  Supplementary online material for article, "A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite" , 2018 .

[65]  L. Gizon,et al.  Rotation, differential rotation, and gyrochronology of active Kepler stars , 2015, 1507.07757.

[66]  Suvrath Mahadevan,et al.  THE INNER EDGE OF THE HABITABLE ZONE FOR SYNCHRONOUSLY ROTATING PLANETS AROUND LOW-MASS STARS USING GENERAL CIRCULATION MODELS , 2016, 1602.05176.

[67]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.

[68]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[69]  David A. Golimowski,et al.  ERRATUM: “THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. II. THE FIELD” (2010, AJ, 139, 2679) , 2010, 1004.4002.

[70]  Photometry of Proxima Centauri and Barnard's Star Using Hubble Space Telescope Fine Guidance Sensor 3: A Search for Periodic Variations* , 1998, astro-ph/9806276.

[71]  S. V. Jeffers,et al.  CARMENES input catalogue of M dwarfs. I. Low-resolution spectroscopy with CAFOS , 2015, 1502.07580.

[72]  D. Queloz,et al.  First radius measurements of very low mass stars with the VLTI , 2002 .

[73]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[74]  K. Covey,et al.  NEAR-INFRARED METALLICITIES, RADIAL VELOCITIES, AND SPECTRAL TYPES FOR 447 NEARBY M DWARFS , 2013, 1310.1087.

[75]  Suzanne L. Hawley,et al.  New light on dark stars : red dwarfs, low-mass stars, brown dwarfs , 2000 .

[76]  I. Ribas,et al.  GU Bootis: A New 0.6 M☉ Detached Eclipsing Binary , 2005, astro-ph/0505001.

[77]  Gregory A. Feiden,et al.  MAGNETIC INHIBITION OF CONVECTION AND THE FUNDAMENTAL PROPERTIES OF LOW-MASS STARS. II. FULLY CONVECTIVE MAIN-SEQUENCE STARS , 2014, 1405.1767.

[78]  J. Bochanski,et al.  CONSTRAINING THE AGE–ACTIVITY RELATION FOR COOL STARS: THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 LOW-MASS STAR SPECTROSCOPIC SAMPLE , 2007, 0712.1590.

[79]  Ignasi Ribas,et al.  Absolute Dimensions of the M-Type Eclipsing Binary YY Geminorum (Castor C): A Challenge to Evolutionary Models in the Lower Main Sequence* , 2001 .

[80]  An Observational Study of Tidal Synchronization in Solar-Type Binary Stars in the Open Clusters M35 and M34 , 2006, astro-ph/0608154.

[81]  John Asher Johnson,et al.  CHARACTERIZING THE COOL KOIs. V. KOI-256: A MUTUALLY ECLIPSING POST-COMMON ENVELOPE BINARY , 2013, 1304.1165.

[82]  G. Carraro,et al.  The Gaia-ESO Survey: Stellar radii in the young open clusters NGC 2264, NGC 2547 and NGC 2516 , 2015, 1511.06900.

[83]  Andrew A. West,et al.  THE ROTATION AND GALACTIC KINEMATICS OF MID M DWARFS IN THE SOLAR NEIGHBORHOOD , 2015, 1511.00957.