CHARACTERIZATION OF SLOAN DIGITAL SKY SURVEY STELLAR PHOTOMETRY

We study the photometric properties of stars in the data archive of the Sloan Digital Sky Survey (SDSS), the prime aim being to understand the photometric calibration over the entire data set. It is confirmed that the photometric calibration of point sources is accurately on the system defined by the SDSS standard stars. We have also confirmed that the photometric synthesis of the SDSS spectrophotometric data gives broadband fluxes that agree with the photometry with errors of no more than 0.04 mag and little systematic tilt with wavelength. This verifies that the response functions of the 2.5 m telescope system are well characterized. We locate stars in the SDSS photometric system, so that stars can roughly be classified into spectral classes from the color information. We show how metallicity and surface gravity affect colors, and that stars contained in the SDSS general catalog, plotted in color space, show a distribution that matches well with what is anticipated from the variations of metallicity and surface gravity. The color-color plots are perfectly consistent among the three samples—stars in the SDSS general catalog, SDSS standard stars, and spectrophotometric stars of Gunn & Stryker—especially when some considerations are taken into account of the differences (primarily metallicity) of the samples. We show that the g – r-inverse temperature relation is tight and can be used as a good estimator of the effective temperature of stars over a fairly wide range of effective temperatures. We also confirm that the colors of G2V stars in the SDSS photometric system match well with the Sun.

[1]  Robert Rosner,et al.  Photometric Separation of Stellar Properties Using SDSS Filters , 1998 .

[2]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[3]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[4]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[5]  J. Frogel,et al.  Infrared photometry, bolometric magnitudes, and effective temperatures for giants in M3, M13, M92, and M67 , 1978 .

[6]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[7]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[8]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[9]  B. Yanny,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006 .

[10]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[11]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[12]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[13]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[14]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[15]  Takashi Ichikawa,et al.  GALAXY COLORS IN VARIOUS PHOTOMETRIC BAND SYSTEMS , 1995 .

[16]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[17]  R. L. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[18]  Naoki Yasuda,et al.  A Catalog of Morphologically Classified Galaxies from the Sloan Digital Sky Survey: North Equatorial Region , 2007, 0704.1743.

[19]  B. Yanny,et al.  Submitted for publication in the Astronomical Journal The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars 1 , 2022 .

[20]  J. E. Gunn,et al.  Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A , 1983 .

[21]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[22]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[23]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[24]  D. Hayes,et al.  Stellar Absolute Fluxes and Energy Distributions from 0.32 to 4.0 μm , 1985 .

[25]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[26]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[27]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[28]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[29]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[30]  M. Fukugita,et al.  LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY , 2009, 0905.4125.

[31]  Richard O. Gray,et al.  The Physical Basis of Luminosity Classification in the Late A-, F-, and Early G-Type Stars. I. Precise Spectral Types for 372 Stars , 2000 .

[32]  High-redshift quasars found in sloan digital sky survey commissioning data. III. A color-selected sample at i* <20 in the fall equatorial stripe , 2000, astro-ph/0008122.

[33]  M. J. Shallis,et al.  Stellar angular diameters from infrared photometry. Application to Arcturus and other stars; with effective temperatures. , 1977 .

[34]  L. Colina,et al.  The 0.12-2.5 micron Absolute Flux Distribution of the Sun for Comparison With Solar Analog Stars , 1996 .

[35]  J. Munn,et al.  Cool White Dwarfs in the Sloan Digital Sky Survey , 2005, astro-ph/0503601.

[36]  David G. Monet,et al.  The White Dwarf Luminosity Function from Sloan Digital Sky Survey Imaging Data , 2005, astro-ph/0510820.

[37]  C. Soubiran,et al.  Catalogue of [Fe/H] determinations for FGK stars: 2001 edition , 2001, astro-ph/0106438.

[38]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[39]  Johan Holmberg,et al.  The colours of the sun , 2005, astro-ph/0511158.

[40]  D. York,et al.  Stellar Population Studies with the SDSS. I. The Vertical Distribution of Stars in the Milky Way , 2001 .

[41]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[42]  Alexander G. Gray,et al.  EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1, 000, 000 QUASARS FROM DATA RELEASE 6 , 2004, The Astrophysical Journal Supplement Series.

[43]  D. Hayes,et al.  Calibration of Fundamental Stellar Quantities , 1985 .

[44]  J. E. O'Donnell R(sub nu)-dependent optical and near-ultraviolet extinction , 1994 .

[45]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[46]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[47]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[48]  M. Fukugita,et al.  A Study of the B−V Color-Temperature Relation , 1999, astro-ph/9904299.

[49]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[50]  James Liebert,et al.  A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4 , 2006, astro-ph/0606700.

[51]  J. A. Smith,et al.  SDSS data management and photometric quality assessment , 2004 .