Aluminum and Chromium Toxicity in Maize: Implications for Agronomic Attributes, Net Photosynthesis, Physio-Biochemical Oscillations, and Metal Accumulation in Different Plant Parts

Phytotoxic effects of a single heavy metal on different crops are widely reported; however, consequences of combined metal toxicity on maize are rarely investigated. In this study, a pot experiment was conducted to assess the phytotoxic effects both Al and Cr on morphophysiological and biochemical traits, photosynthetic gas exchange capacities, metal uptake, and translocation in different plant parts. Plants were exposed to Al3+ (100 μM), Cr6+ (100 μM), and Al3+ + Cr6+ (100 + 100 μM), and data were collected at pre- and post-silking stages while uncontaminated pots were served as control (Ck). Results depicted that both Al and Cr impaired maize growth and yield response and inhibited photosynthesis and gas exchange attributes i.e., transpiration, stomatal conductance, inter-cellular CO2, as well as water use efficiency (WUE) and intrinsic water use efficiency (WUEi). Moreover, Al and Cr toxicities caused lipid peroxidation and membrane damage while activated antioxidative defense system in terms of superoxide dismutase (SOD), peroxidaes (POD), and catalase (CAT) and mediated reduced glutathione contents (GSH). Increased proline and reduced protein contents were also observed with a combined metal toxicity. Interestingly, Cr proved to be more toxic than Al whereas affects were more apparent where both Al and Cr were applied simultaneously. Plant exposure to both Al and Cr increased metal contents in different plant parts, while maximum metal contents were recorded in roots followed by stem, leaves, corn ear, and grains. Overall severity in phytotoxic effects was observed as Al+Cr > Cr > Al > Ck. Additionally, values of combined application of both Al + Cr were higher than those of the linear sum of Al and Cr alone, suggesting that synergistic effects of Al + Cr were more toxic than their individual effects. Hence, combined metal toxicity proved more damaging for maize than individual metal stress.

[1]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[2]  O. Griffith,et al.  Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. , 1980, Analytical biochemistry.

[3]  H. Greppin,et al.  Peroxidase Release Induced by Ozone in Sedum album Leaves: Involvement of Ca. , 1984, Plant physiology.

[4]  W. Ernst,et al.  Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus , 1991 .

[5]  Michael Moustakas,et al.  Indirect effect of aluminium stress on the function of the photosynthetic apparatus , 1996 .

[6]  M. G. Barreiro,et al.  Effects of aluminum toxicity on nutrient accumulation in maize shoots: Implications on photosynthesis , 1999 .

[7]  A. Hegedűs,et al.  Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress , 2001 .

[8]  L. M. Sandalio,et al.  Cadmium-induced changes in the growth and oxidative metabolism of pea plants. , 2001, Journal of experimental botany.

[9]  H. Matsumoto,et al.  Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. , 2001, Plant physiology.

[10]  Yukiko Kobayashi,et al.  Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. , 2002, Plant physiology.

[11]  F. J. Corpas,et al.  Plant proteases, protein degradation, and oxidative stress: role of peroxisomes , 2002 .

[12]  C. Sharma,et al.  Phytotoxic lesions of chromium in maize. , 2003, Chemosphere.

[13]  C. Poschenrieder,et al.  Water Relations in Heavy Metal Stressed Plants , 2004 .

[14]  Michael Moustakas,et al.  Short-term effects of aluminium at alkaline pH on the structure and function of the photosynthetic apparatus , 1998, Photosynthetica.

[15]  I. D. Teare,et al.  Rapid determination of free proline for water-stress studies , 1973, Plant and Soil.

[16]  A. Shanker,et al.  Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots , 2004 .

[17]  S. Singh,et al.  Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. , 2005, Ecotoxicology and environmental safety.

[18]  Carlos Cervantes,et al.  Chromium toxicity in plants. , 2005, Environment international.

[19]  K. Kouno,et al.  Relationships between microbial biomass nitrogen, nitrate leaching and nitrogen uptake by corn in a compost and chemical fertilizer-amended regosol , 2006 .

[20]  M. Foolad,et al.  Roles of glycine betaine and proline in improving plant abiotic stress resistance , 2007 .

[21]  G. Garçon,et al.  Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. , 2007, Environmental pollution.

[22]  M. Mobin,et al.  Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. , 2007, Journal of plant physiology.

[23]  B. R. Smith,et al.  Aluminum-induced effects on Photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. , 2008, Tree physiology.

[24]  Guo-ping Zhang,et al.  Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. , 2008, Environmental pollution.

[25]  Donghua Liu,et al.  Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. , 2008, Bioresource technology.

[26]  Xiaoe Yang,et al.  Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. , 2008, Journal of hazardous materials.

[27]  Juan Barceló,et al.  A glance into aluminum toxicity and resistance in plants. , 2008, The Science of the total environment.

[28]  R. Dubey Metal Toxicity, Oxidative Stress and Antioxidative Defense System in Plants , 2010 .

[29]  Yunxia Wang,et al.  The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. , 2010, Annals of botany.

[30]  Hai-tao Dong,et al.  Physiological responses and comparative transcriptional profiling of maize roots and leaves under imposition and removal of aluminium toxicity , 2010 .

[31]  S. Gupta Reactive oxygen species and antioxidants in higher plants , 2010 .

[32]  S. Sinha,et al.  Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. , 2010, Ecotoxicology and environmental safety.

[33]  Jiebo Luo,et al.  Hydrogen sulfide alleviated chromium toxicity in wheat , 2010, Biologia Plantarum.

[34]  Guo-ping Zhang,et al.  The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance , 2011 .

[35]  M. Farooq,et al.  Fulvic Acid Application Improves the Maize Performance under Well‐watered and Drought Conditions , 2011 .

[36]  M. López-Climent,et al.  Effects of cadmium on gas exchange and phytohormone contents in citrus , 2011, Biologia Plantarum.

[37]  N. Khan,et al.  Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. , 2012, Plant, cell & environment.

[38]  Guo-ping Zhang,et al.  Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. , 2012, Journal of hazardous materials.

[39]  M. Prasad,et al.  Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. , 2012, Chemosphere.

[40]  G. Pinto,et al.  Aluminium long-term stress differently affects photosynthesis in rye genotypes. , 2012, Plant physiology and biochemistry : PPB.

[41]  A. Matilla,et al.  Role of H 2 O 2 as Signaling Molecule in Plants , 2012 .

[42]  Shafaqat Ali,et al.  5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape , 2013, Environmental Science and Pollution Research.

[43]  Fei Gao,et al.  Short-Term Chromium-Stress-Induced Alterations in the Maize Leaf Proteome , 2013, International journal of molecular sciences.

[44]  M. Rafiq,et al.  5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. , 2013, Ecotoxicology and environmental safety.

[45]  S. Peng,et al.  Potentially toxic elements concentration in milled rice differ among various planting patterns , 2014 .

[46]  Parul Sharma,et al.  Aluminum stress inhibits root growth and alters physiological and metabolic responses in chickpea (Cicer arietinum L.). , 2014, Plant physiology and biochemistry : PPB.

[47]  Shafaqat Ali,et al.  Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. , 2015, Chemosphere.

[48]  M. Rizwan,et al.  Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. , 2015, Ecotoxicology and environmental safety.

[49]  D. Chauhan,et al.  Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses , 2015 .

[50]  S. Hussain,et al.  Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review , 2015, Environmental Science and Pollution Research.

[51]  S. Anjum,et al.  Chromium and Aluminum Phytotoxicity in Maize: Morpho‐Physiological Responses and Metal Uptake , 2016 .

[52]  O. Gašparíková,et al.  Effect of osmotic stress on compatible solutes content, membrane stability and water relationsin two maize cultivars , 2018 .