Plasmon Bragg reflectors and nanocavities on flat metallic surfaces

Metal heterostructures constructed surface plasmon polaritons (SPPs) Bragg reflectors and nanocavities on flat metallic surfaces are proposed and demonstrated numerically. A metal heterowaveguide structured by alternately stacking two kinds of metal gap waveguides (MGWs) shows periodically effective refraction index modulation to SPPs and produces SPP propagation on flat metallic surfaces a band gap in certain frequencies, known as plasmonic band gap, in which SPP propagation is forbidden. Changing the width of one MGW in the heterowaveguide, a SPP nanocavity with high quality factor can be created. Our results imply a broad possibility of constructed SPP-based Bragg reflectors, emitter, and filters, etc., on flat metallic surfaces for planar nanometeric photonic networks.

[1]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[2]  Bing Wang,et al.  Surface plasmon polariton propagation in nanoscale metal gap waveguides. , 2004, Optics letters.

[3]  I P Kaminow,et al.  Metal-clad optical waveguides: analytical and experimental study. , 1974, Applied optics.

[4]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.

[5]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[6]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[7]  C. Weisbuch,et al.  Impurity Modes in One Dimensional Periodic Systems: The Transition from Photonic Band Gaps to Microcavities , 1993 .

[8]  Kitson,et al.  Full Photonic Band Gap for Surface Modes in the Visible. , 1996, Physical review letters.

[9]  Harald Ditlbacher,et al.  Two-dimensional optics with surface plasmon polaritons , 2002 .

[10]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[11]  Peter A. Hobson,et al.  Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes , 2002 .

[12]  Federico Capasso,et al.  Single-mode surface-plasmon laser , 2000 .

[13]  Shanhui Fan,et al.  Channel Drop Tunneling through Localized States , 1998 .

[14]  J. Hvam,et al.  Waveguiding in surface plasmon polariton band gap structures. , 2001, Physical review letters.

[15]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[16]  Bernhard Lamprecht,et al.  Near-field observation of surface plasmon polariton propagation on thin metal stripes , 2001 .

[17]  Bing Wang,et al.  Metal heterowaveguides for nanometric focusing of light , 2004 .

[18]  María Ujué González,et al.  Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides , 2004 .

[19]  John B. Pendry,et al.  Photonic Band Structures , 1994 .

[20]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.