Intramolecular distances determined by energy transfer. Dependence on orientational freedom of donor and acceptor

The dependence of Förster long‐range resonance energy transfer efficiency on the orientational freedom of donor D and acceptor A molecules attached to a macromolecular substrate is examined. The usefulness of polarized emission measurements in determining the mutual orientation as well as the degree of orientational freedom of D and A and thereby deriving maximum and minimum values for the D–A separation from the transfer efficieny is demonstrated.

[1]  L. Brand,et al.  Intramolecular transfer of excitation from tryptophan to 1-dimethylaminonaphthalene 5-sulfonamide in a series of model compounds. , 1968, Biochemistry.

[2]  R. Cathou,et al.  The shape of immunoglobulin G molecules in solution. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. E. Dale,et al.  Interpretation of intramolecular energy transfer experiments , 1974 .

[4]  J. Eisinger,et al.  Energy transfer in tRNAPhe (Yeast). The solution structure of transfer RNA , 1974, Biopolymers.

[5]  D. Auld,et al.  Surveyor substrates: energy-transfer gauges of active center topography during catalysis. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[6]  I. Z. Steinberg Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides. , 1971, Annual review of biochemistry.

[7]  G. Roberts,et al.  Calculation of dipolar nuclear magnetic relaxation times in molecules with multiple internal rotations , 1973 .

[8]  C. Cantor,et al.  Studies of transfer RNA tertiary structure by singlet-singlet energy transfer. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Th. Förster Fluoreszenz organischer Verbindungen , 1951 .

[10]  C. Luk Energy transfer between tryptophans and aromatic ligands in apomyoglobin , 1971, Biopolymers.

[11]  G. Gabor,et al.  Radiationless energy transfer through a polypeptide chain , 1968, Biopolymers.

[12]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[13]  Alfred Ehmert,et al.  Ein einfaches Verfahren zur Messung kleinster Jodkonzentrationen, Jod- und Natriumthiosulfatmengen in Lösungen , 1949 .

[14]  F. Perrin Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l'etat excité , 1926 .

[15]  E. Blout,et al.  ENERGY TRANSFER. A SYSTEM WITH RELATIVELY FIXED DONOR-ACCEPTOR SEPARATION. , 1965, Journal of the American Chemical Society.

[16]  M. H. Tellez-Plasencia Mesures calorimétriques de l'énergie des rayons X ionisation de l'air et des gaz rares: Nouvelles déterminations des constantes : énergie de formation d'une paire d'ions, ε. rendement en fluorescence, us. Amplitude des discontinuités d'absorption, d , 1953 .

[17]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Zwick,et al.  Sensibilisierte Fluoreszenz nach strahlungslosem Energieübergang durch dünne Schichten , 1963 .

[19]  J. Eisinger Intramolecular energy transfer in adrenocorticotropin. , 1969, Biochemistry.

[20]  L. Stryer,et al.  Segmental flexibility in an antibody molecule. , 1970, Journal of molecular biology.

[21]  R. E. Kellogg,et al.  MECHANISMS AND RATES OF RADIATIONLESS ENERGY TRANSFER , 1968 .

[22]  P. Wahl,et al.  Etude de la depolarisation Brownienne pendant le declin de fluorescence de polymeres vinyliques , 1970 .

[23]  Theory of concentration depolarization of photoluminescence and intermolecular energy transfer in rigid solutions , 1972 .

[24]  L. Stryer,et al.  Proximity relationships in rhodopsin. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Schiller Study of adrenocorticotropic hormone conformation by evaluation of intramolecular resonance energy transfer in N -dansyllysine 21 -ACTH-(1-24)-tetrakosipeptide. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Cathou,et al.  Energy transfer distance measurements in immunoglobulins. II. Localization of the hapten binding sites and the interheavy chain disulfide bond in rabbit antibody. , 1973, Journal of molecular biology.

[27]  G. Weber,et al.  Rotational Brownian motion and polarization of the fluorescence of solutions. , 1953, Advances in protein chemistry.

[28]  J. Murrell The theory of the electronic spectra of organic molecules , 1963 .

[29]  D. Wallach Effect of Internal Rotation on Angular Correlation Functions , 1967 .

[30]  G. Weber Polarization of the fluorescence of macromolecules. I. Theory and experimental method. , 1952, The Biochemical journal.

[31]  P. Wahl,et al.  Étude théorique de la polarisation de fluorescence des macromolécules portant un groupe émetteur mobile autour d'un axe de rotation , 1963 .

[32]  F. Craver Theory of concentration quenching of fluorescence polarization in two-dimensional solutions , 1971 .

[33]  A. C. Albrecht Polarizations and assignments of transitions: The method of photoselection , 1961 .

[34]  Intermolecular Energy Transfer and Concentration Depolarization of Fluorescent Light , 1959 .