Quantum and classical message identification via quantum channels

We discuss concepts of message identification in the sense of Ahlswede and Dueck via general quantum channels, extending investigations for classical channels, initial work for classical-quantum (cq) channels and "quantum fingerprinting". We show that the identification capacity of a discrete memoryless quantum channel for classical information can be larger than that for transmission; this is in contrast to all previously considered models, where it turns out to equal the common randomness capacity (equals transmission capacity in our case): in particular, for a noiseless qubit, we show the identification capacity to be 2, while transmission and common randomness capacity are 1. Then we turn to a natural concept of identification of quantum messages (i.e. a notion of "fingerprint" for quantum states). This is much closer to quantum information transmission than its classical counterpart (for one thing, the code length grows only exponentially, compared to double exponentially for classical identification). Indeed, we show how the problem exhibits a nice connection to visible quantum coding. Astonishingly, for the noiseless qubit channel this capacity turns out to be 2: in other words, one can compress two qubits into one and this is optimal. In general however, we conjecture quantum identification capacity to be different from classical identification capacity.

[1]  G. Ludwig Die Grundlagen der Quantenmechanik , 1954 .

[2]  Christian Kleinewächter,et al.  On identification , 2005, Electron. Notes Discret. Math..

[3]  R. Werner,et al.  Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.

[4]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[5]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[6]  Greg Kuperberg,et al.  The capacity of hybrid quantum memory , 2002, IEEE Trans. Inf. Theory.

[7]  Rudolf Ahlswede,et al.  Identification in the presence of feedback-A discovery of new capacity formulas , 1989, IEEE Trans. Inf. Theory.

[8]  Andreas Winter On the fidelity of two pure states , 2001 .

[9]  Jacob Wolfowitz Coding Theorems of Information Theory , 1962 .

[10]  A. Holevo Problems in the mathematical theory of quantum communication channels , 1977 .

[11]  Jozsa,et al.  General fidelity limit for quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[13]  H. Yuen Coding theorems of quantum information theory , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[14]  J. Wolfowitz Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.

[15]  Peter Löber Quantum channels and simultaneous ID coding , 1999 .

[16]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[17]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[18]  Yossef Steinberg New Converses in the Theory of Identification via Channels , 1998, IEEE Trans. Inf. Theory.

[19]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[20]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[21]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[22]  Rudolf Ahlswede,et al.  Identification via channels , 1989, IEEE Trans. Inf. Theory.

[23]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[24]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[25]  A. S. Holevo,et al.  Capacity of a quantum communication channel , 1979 .

[26]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[27]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[28]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  Rudolf Ahlswede,et al.  General theory of information transfer , 2005, Electron. Notes Discret. Math..

[30]  Andris Ambainis,et al.  The quantum communication complexity of sampling , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[31]  Andreas J. Winter Quantum and classical message protect identification via quantum channels , 2004, Quantum Inf. Comput..

[32]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[33]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[34]  M. Ruskai,et al.  Entanglement Breaking Channels , 2003, quant-ph/0302031.

[35]  E. Kushilevitz,et al.  Communication Complexity: Basics , 1996 .

[36]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[37]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[38]  H. Sommers,et al.  Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.

[39]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .