Quantum and classical message identification via quantum channels
暂无分享,去创建一个
[1] G. Ludwig. Die Grundlagen der Quantenmechanik , 1954 .
[2] Christian Kleinewächter,et al. On identification , 2005, Electron. Notes Discret. Math..
[3] R. Werner,et al. Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.
[4] Michael D. Westmoreland,et al. Sending classical information via noisy quantum channels , 1997 .
[5] Debbie W. Leung,et al. Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.
[6] Greg Kuperberg,et al. The capacity of hybrid quantum memory , 2002, IEEE Trans. Inf. Theory.
[7] Rudolf Ahlswede,et al. Identification in the presence of feedback-A discovery of new capacity formulas , 1989, IEEE Trans. Inf. Theory.
[8] Andreas Winter. On the fidelity of two pure states , 2001 .
[9] Jacob Wolfowitz. Coding Theorems of Information Theory , 1962 .
[10] A. Holevo. Problems in the mathematical theory of quantum communication channels , 1977 .
[11] Jozsa,et al. General fidelity limit for quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[12] E. Prugovec̆ki. Information-theoretical aspects of quantum measurement , 1977 .
[13] H. Yuen. Coding theorems of quantum information theory , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[14] J. Wolfowitz. Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.
[15] Peter Löber. Quantum channels and simultaneous ID coding , 1999 .
[16] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[17] P. Shor,et al. The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.
[18] Yossef Steinberg. New Converses in the Theory of Identification via Channels , 1998, IEEE Trans. Inf. Theory.
[19] Andreas J. Winter,et al. Quantum Reverse Shannon Theorem , 2009, ArXiv.
[20] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[21] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.
[22] Rudolf Ahlswede,et al. Identification via channels , 1989, IEEE Trans. Inf. Theory.
[23] Sergio Verdú,et al. Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.
[24] Tomohiro Ogawa,et al. Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.
[25] A. S. Holevo,et al. Capacity of a quantum communication channel , 1979 .
[26] Peter W. Shor,et al. Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.
[27] R. Cleve,et al. Quantum fingerprinting. , 2001, Physical review letters.
[28] Schumacher,et al. Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[29] Rudolf Ahlswede,et al. General theory of information transfer , 2005, Electron. Notes Discret. Math..
[30] Andris Ambainis,et al. The quantum communication complexity of sampling , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[31] Andreas J. Winter. Quantum and classical message protect identification via quantum channels , 2004, Quantum Inf. Comput..
[32] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[33] Rudolf Ahlswede,et al. Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.
[34] M. Ruskai,et al. Entanglement Breaking Channels , 2003, quant-ph/0302031.
[35] E. Kushilevitz,et al. Communication Complexity: Basics , 1996 .
[36] Rudolf Ahlswede,et al. Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.
[37] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[38] H. Sommers,et al. Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.
[39] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .