A kernel-based approach to Hammerstein system identification

Abstract In this paper, we propose a novel algorithm for the identification of Hammerstein systems. Adopting a Bayesian approach, we model the impulse response of the unknown linear dynamic system as a realization of a zero-mean Gaussian process. The covariance matrix (or kernel) of this process is given by the recently introduced stable-spline kernel, which encodes information on the stability and regularity of the impulse response. The static nonlinearity of the model is identified using an Empirical Bayes approach, i.e. by maximizing the output marginal likelihood, which is obtained by integrating out the unknown impulse response. The related optimization problem is solved adopting a novel iterative scheme based on the Expectation-Maximization method, where each iteration consists in a simple sequence of update rules. Numerical experiments show that the proposed method compares favorably with a standard algorithm for Hammerstein system identification.

[1]  D. Westwick,et al.  Separable Least Squares Identification of Nonlinear Hammerstein Models: Application to Stretch Reflex Dynamics , 2001, Annals of Biomedical Engineering.

[2]  Wlodzimierz Greblicki,et al.  Stochastic approximation in nonparametric identification of Hammerstein systems , 2002, IEEE Trans. Autom. Control..

[3]  Giulio Bottegal,et al.  Regularized spectrum estimation using stable spline kernels , 2013, Autom..

[4]  Giuseppe De Nicolao,et al.  Kernel selection in linear system identification Part I: A Gaussian process perspective , 2011, IEEE Conference on Decision and Control and European Control Conference.

[5]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[6]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[7]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[8]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[9]  K. Poolla,et al.  New results for Hammerstein system identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[10]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[11]  Henrik Ohlsson,et al.  On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..

[12]  J. S. Maritz,et al.  Empirical Bayes Methods , 1974 .

[13]  Giuseppe De Nicolao,et al.  A new kernel-based approach for linear system identification , 2010, Autom..

[14]  Alessandro Chiuso,et al.  Prediction error identification of linear systems: A nonparametric Gaussian regression approach , 2011, Autom..

[15]  Lennart Ljung,et al.  Kernel methods in system identification, machine learning and function estimation: A survey , 2014, Autom..

[16]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .

[17]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[18]  Raymond A. de Callafon,et al.  Hammerstein system identification using nuclear norm minimization , 2012, Autom..

[19]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[20]  Yves Rolain,et al.  Parametric Identification of Parallel Hammerstein Systems , 2011, IEEE Transactions on Instrumentation and Measurement.

[21]  Er-Wei Bai,et al.  Identification of a modified Wiener-Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling , 2009, Autom..

[22]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[23]  Alessandro Chiuso,et al.  Tuning complexity in kernel-based linear system identification: The robustness of the marginal likelihood estimator , 2014, 2014 European Control Conference (ECC).

[24]  강승규,et al.  Empirical Bayes Method를 이용한 교통사고 예측모형 , 2009 .

[25]  Giulio Bottegal,et al.  Blind system identification using kernel-based methods , 2014, ArXiv.

[26]  G. McLachlan,et al.  Extensions of the EM Algorithm , 2007 .

[27]  Johan A. K. Suykens,et al.  Subspace identification of Hammerstein systems using least squares support vector machines , 2005, IEEE Transactions on Automatic Control.

[28]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[29]  Lennart Ljung,et al.  Developments in The MathWorks System Identification Toolbox , 2009 .