The relative importance of vibrational and ligand field splittings on core d-level photoelectron and NVV Auger spectra: high resolution core level photoelectron spectrum of the I 4d level of HI

A high resolution I 4d photoelectron spectrum (total instrumental resolution (60 meV) of HI is reported. The resolved splitting of the 4d9 final state is shown to be due to ligand field and not vibrational splitting. Previously reported I 4d photoelectron and NVV Auger spectra of HI (Karlsson et al) are reinterpreted based on the ligand field splitting of the I 4d core level. The presence of valence electron relaxation in hydrogen halides is shown to be an important influence on the magnitude of core level ligand field splitting and inherent linewidth.

[1]  Tan,et al.  Vibrational structure in core-level photoelectron spectra: Periodic trends. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  Tan,et al.  Chemical dependence of core-level linewidths and ligand-field splittings: High-resolution core-level photoelectron spectra of I 4d levels. , 1991, Physical review letters.

[3]  Tan,et al.  Vibrational fine structure in the Si 2p photoelectron spectra of simple gaseous molecules. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[4]  Tan,et al.  Vibrationally resolved core-level photoelectron spectroscopy: Si 2p levels of SiH4 and SiF4 molecules. , 1990, Physical review letters.

[5]  J. Bozek,et al.  High resolution molecular gas phase photoelectron spectra of core levels using synchrotron radiation - vibrational and ligand field splittings , 1990 .

[6]  Keane,et al.  High-resolution Auger-electron spectrum of HCl and DCl. , 1989, Physical review. A, General physics.

[7]  S. Svensson,et al.  The NVV Auger electron spectrum of the HI molecule , 1989 .

[8]  S. Svensson,et al.  Isotope effects in the auger electron spectra of HBr and DBr , 1989 .

[9]  Karlsson,et al.  Observation of isotope effects in Auger-electron spectra: The predissociative (2 pi -2)3 Sigma - state in HCl and DCl. , 1988, Physical review letters.

[10]  J. Bozek,et al.  High resolution photoelectron spectra of gasphase molecules using synchrotron radiation , 1988 .

[11]  P. Bernath,et al.  The infrared spectrum of XeH , 1987 .

[12]  J. Tse,et al.  Ligand-Field Splittings on Core Levels of Main Group Compounds and Metal Surfaces from Photoelectron Spectra , 1986 .

[13]  T. Thomas,et al.  Charge distribution in diatomic halides from electron spectroscopy , 1985 .

[14]  Tan,et al.  High-resolution gas-phase photoelectron spectra using synchrotron radiation: Xe 4d linewidths and the 4d5/2:4d3/2 branching ratio. , 1985, Physical review. A, General physics.

[15]  C. Eyermann,et al.  Core-electron binding energies for gaseous atoms and molecules , 1984 .

[16]  Sebastian Doniach,et al.  Synchrotron Radiation Research , 1978, Springer US.

[17]  H. Basch,et al.  Valence and core electron energies in alkyl cadmium compounds from ab initio calculations and photoelectron spectra: Electric field gradients in gas phase Cd compounds , 1977 .

[18]  James D. Brown,et al.  ESCA study of sputtered platinum films , 1975 .

[19]  W. Schwarz,et al.  Electronic and geometric structure of the free XeF6 molecule , 1974 .

[20]  C. Jørgensen Modern aspects of ligand field theory , 1971 .

[21]  C. Ballhausen,et al.  Introduction to Ligand Field Theory , 1962 .