Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers

Investigation of the thermo-reversible properties of different poly(N-isopropyl acrylamide) samples, including microgels and block copolymers, with a combination of methods such as electron microscopy, dynamic light scattering, analytical ultracentrifugation, electrophoresis and ultrasound resonator technology allows comprehensive characterisation of the phase transition. By the combination of methods, it was possible to show that the precipitated polymer phase contains at 40 °C between 40 and 50 vol.% of water. Besides free bulk water, there is also bound water that strongly adheres to the N-isopropyl acrylamide units (about 25 vol.%). Ultrasound resonator technology, which is a non-sizing characterisation method, revealed for the microgel particles two more temperatures (at about 35 and between 40 °C and 50 °C depending on the chemical nature) where characteristic changes in the ultrasound attenuation take place. Moreover, the experimental data suggest that the phase transition temperature is related to surface charge density of the precipitated particles.

[1]  J. Eliassaf Aqueous solutions of poly(N-isopropylacrylamide) , 1978 .

[2]  T. Binkert,et al.  Intermolecular and intramolecular solubilization: Collapse and expansion of a polymer chain in surfactant solutions. , 1990, Physical review letters.

[3]  Robert Pelton,et al.  Preparation of aqueous latices with N-isopropylacrylamide , 1986 .

[4]  C. R. Martin,et al.  Water transport across polystyrenesulfonate/alumina composite membranes , 1995 .

[5]  Eric Nies,et al.  Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks , 2000 .

[6]  J. S. Pedersen,et al.  Influence of shell thickness and cross-link density on the structure of temperature-sensitive poly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide core-shell microgels investigated by small-angle neutron scattering. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[7]  J. L. Ortega-Vinuesa,et al.  Cationic and anionic poly(N-isopropylacrylamide) based submicron gel particles: electrokinetic properties and colloidal stability. , 2006, The journal of physical chemistry. B.

[8]  K. Jandt,et al.  A new strategy to prepare temperature-sensitive poly(N-isopropylacrylamide) microgels , 2008 .

[9]  J. S. Pedersen,et al.  Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. , 2004, The Journal of chemical physics.

[10]  H. Kawaguchi,et al.  Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core , 2006 .

[11]  A. Lele,et al.  Predictions of Bound Water Content in Poly(N-isopropylacrylamide) Gel† , 1997 .

[12]  A. Hoffman,et al.  Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH , 1995, Nature.

[13]  T. Okano,et al.  Thermo-sensitive polymers as on-off switches for drug release , 1987 .

[14]  C. Pichot,et al.  NMR investigations into heterogeneous structures of thermosensitive microgel particles , 2000 .

[15]  T. Okano,et al.  Temperature-responsive bioconjugates. 1. Synthesis of temperature-responsive oligomers with reactive end groups and their coupling to biomolecules. , 1993, Bioconjugate chemistry.

[16]  Ponisseril Somasundaran,et al.  ENCYCLOPEDIA OF Surface and Colloid Science , 2006 .

[17]  K. Edwards,et al.  A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid) , 2004 .

[18]  H. Kawaguchi,et al.  Monodisperse microspheres exhibiting discontinuous response to temperature change , 1998 .

[19]  A. Coehn Ueber ein Gesetz der Electricitätserregung , 1898 .

[20]  J. Rička,et al.  Coil-globule transition of poly(N-isopropylacrylamide): a study of surfactant effects by light scattering , 1991 .

[21]  L. Dong,et al.  Synthesis and application of thermally reversible heterogels for drug delivery , 1990 .

[22]  K. Tauer,et al.  Polymer dispersions as intermediate state during the synthesis of specialty polymers , 2002 .

[23]  L. Zha,et al.  Preparation of Poly(N‐isopropylacrylamide) Microgels using Different Initiators Under Various pH Values , 2006 .

[24]  P. Cremer,et al.  Effects of end group polarity and molecular weight on the lower critical solution temperature of poly(N‐isopropylacrylamide) , 2006 .

[25]  M. Lechner Static density gradient centrifugation; extended Hermans‐Ende equation , 1997 .

[26]  B. Saunders On the structure of poly(N-isopropylacrylamide) microgel particles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[27]  A. Hoffman,et al.  Synthesis and purification of thermally sensitive oligomer-enzyme conjugates of poly(N-isopropylacrylamide)-trypsin. , 1996, Bioconjugate chemistry.

[28]  O. Corrigan,et al.  Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[29]  J. Kötz,et al.  Liquid crystalline polyanion/polycation/water systems , 2001 .

[30]  W. Richtering,et al.  Synergistic depression of volume phase transition temperature in copolymer microgels , 2006 .

[31]  Françoise M. Winnik,et al.  Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water , 2006 .

[32]  Chi Wu,et al.  Light-Scattering Study of Coil-to-Globule Transition of a Poly(N-isopropylacrylamide) Chain in Deuterated Water , 1999 .

[33]  Neetu Singh,et al.  Synthesis of multifunctional nanogels using a protected macromonomer approach , 2008, Colloid and polymer science.

[34]  L. Dong,et al.  A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery , 1991 .

[35]  A. Hoffman,et al.  Site-specific polymer-streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. , 2000, Bioconjugate chemistry.

[36]  P. Brown,et al.  Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. , 2006, Biophysical journal.

[37]  K. Tauer,et al.  Transient-thermal and isothermal studies of thermo-sensitive polymer solution with ultrasound resonator technology , 2008 .

[38]  Guy Van Assche,et al.  Influence of Macromolecular Architecture on the Thermal Response Rate of Amphiphilic Copolymers, Based on Poly(N-isopropylacrylamide) and Poly(oxyethylene), in Water , 2007 .

[39]  C. Pichot,et al.  Preparation and characterization of cationic poly(n‐isopropylacrylamide) copolymer latexes , 1995 .

[40]  Allan S. Hoffman,et al.  Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics , 1987 .

[41]  P. Schuck,et al.  Determination of the sedimentation coefficient distribution by least-squares boundary modeling. , 2000, Biopolymers.

[42]  Chi Wu,et al.  Comparison of the Coil-to-Globule and the Globule-to-Coil Transitions of a Single Poly(N-isopropylacrylamide) Homopolymer Chain in Water , 1998 .

[43]  M. Heskins,et al.  Solution Properties of Poly(N-isopropylacrylamide) , 1968 .

[44]  J. Brash,et al.  Synthesis and Solution Properties of Fluorescently Labeled Amphiphilic (N-alkylacrylamide) Oligomers , 1998 .

[45]  J. Feijen,et al.  Quasi-Living Polymerization of N-Isopropylacrylamide onto Poly(ethylene glycol) , 2000 .

[46]  P. Schuck,et al.  Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. , 2000, Biophysical journal.

[47]  C. Holtze,et al.  Unusual Kinetics in Aqueous Heterophase Polymerizations , 2007 .

[48]  Françoise M. Winnik,et al.  Volumetric studies of aqueous polymer solutions using pressure perturbation calorimetry: A new look at the temperature-induced phase transition of poly(N-isopropylacrylamide) in water and D2O , 2001 .

[49]  B. Saunders,et al.  Responsive microgel dispersions , 2010 .

[50]  J. L. Ortega-Vinuesa,et al.  Hofmeister effects on poly(NIPAM) microgel particles: macroscopic evidence of ion adsorption and changes in water structure. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Allan S. Huffman,et al.  Thermally reversible hydrogels: II. Delivery and selective removal of substances from aqueous solutions , 1986 .

[52]  H. Ohshima Electrokinetics of soft particles , 2007 .

[53]  W. H. Blackburn,et al.  Size-controlled synthesis of monodisperse core/shell nanogels , 2008, Colloid and polymer science.

[54]  T. Okano,et al.  Reversibly thermo-responsive alkyl-terminated poly(N-isopropylacrylamide) core-shell micellar structures , 1997 .

[55]  B. Vincent,et al.  Microgel particles as model colloids : theory, properties and applications , 1999 .

[56]  T. Cosgrove,et al.  Factors affecting the swelling of poly(N-isopropylacrylamide) microgel particles: fundamental and commercial implications , 1999 .