Monoid-labeled transition systems

Abstract Given a V -complete (semi)lattice L , we consider L -labeled transition systems as coalgebras of a functor L (−), associating with a set X the set L X of all L -fuzzy subsets. We describe simulations and bisimulations of L -coalgebras to show that L(−) weakly preserves nonempty kernel pairs iff it weakly preserves nonempty pullbacks iff L is join infinitely distributive (JID). Exchanging L for a commutative monoid M , we consider the functor M (−)ω which associates with a set X all finite multisets containing elements of X with multiplicities m ∈ M. The corresponding functor weakly preserves nonempty pullbacks along injectives iff 0 is the only invertible element of M , and it preserves nonempty kernel pairs iff M is refinable, in the sense that two sum representations of the same value, r1 + … + rm = c1 + … + cn, have a common refinement matrix (m(i, j)) whose k-th row sums to rk and whose l-th column sums to cl for any 1≤ k ≤ m and 1 ≤ l ≤ n.

[1]  H. Peter Gumm,et al.  Products of coalgebras , 2001 .

[2]  H. Peter Gumm,et al.  Coalgebraic structure from weak limit preserving functors , 2000, CMCS.

[3]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[4]  Tobias Schröder Coalgebren und Funktoren , 2001 .

[5]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[6]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[7]  Alfred Tarski,et al.  Direct decompositions of finite algebraic systems , 1947 .

[8]  H. Gumm Functors for Coalgebras , 2001 .

[9]  Donald Yau,et al.  Categories , 2021, 2-Dimensional Categories.

[10]  G. Grätzer General Lattice Theory , 1978 .

[11]  H. Peter Gumm,et al.  Coalgebras Of Bounded Type , 2002, Math. Struct. Comput. Sci..

[12]  J. Goguen L-fuzzy sets , 1967 .

[13]  L. Lovász Operations with structures , 1967 .