Threshold Based Penalty Functions for Constrained Multiobjective Optimization

This paper compares the performance of our re-cently proposed threshold based penalty function against its dynamic and adaptive variants. These penalty functions are incorporated in the update and replacement scheme of the multiobjective evolutionary algorithm based on decomposition (MOEA/D) framework to solve constrained multiobjective op-timization problems (CMOPs). As a result, the capability of MOEA/D is extended to handle constraints, and a new algorithm, denoted by CMOEA/D-DE-TDA is proposed. The performance of CMOEA/D-DE-TDA is tested, in terms of the values of IGD-metric and SC-metric, on the well known CF-series test instances. The experimental results are also compared with the three best performers of CEC 2009 MOEA competition. Empirical results show the pitfalls of the proposed penalty functions.

[1]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[2]  Qingfu Zhang,et al.  MOEA/D for constrained multiobjective optimization: Some preliminary experimental results , 2010, 2010 UK Workshop on Computational Intelligence (UKCI).

[3]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[4]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[5]  Muhammad Asif Jan,et al.  A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D , 2013, Appl. Soft Comput..

[6]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[7]  Chun Chen,et al.  Multiple trajectory search for unconstrained/constrained multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[8]  Zhijian Wu,et al.  Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[9]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[10]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[11]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[12]  Vassilios Petridis,et al.  Varying Fitness Functions in Genetic Algorithms: Studying the Rate of Increase of the Dynamic Penalty Terms , 1998, PPSN.

[13]  Hai-Lin,et al.  The multiobjective evolutionary algorithm based on determined weight and sub-regional search , 2009, 2009 IEEE Congress on Evolutionary Computation.