A global topology map of the Saccharomyces cerevisiae membrane proteome.

The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to approximately 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes.

[1]  G. Heijne The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans‐membrane topology , 1986, The EMBO journal.

[2]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[3]  R. Serrano,et al.  Immunological approaches to the transmembrane topology and conformational changes of the carboxyl-terminal regulatory domain of yeast plasma membrane H(+)-ATPase. , 1991, The Journal of biological chemistry.

[4]  R. Schekman,et al.  Topology and Functional Domains of Sec 63 p , an Endoplasmic Reticulum Membrane Protein Required for Secretory Protein Translocation , 1992 .

[5]  G. Fink,et al.  SHR3: A novel component of the secretory pathway specifically required for localization of amino acid permeases in yeast , 1992, Cell.

[6]  AC Tose Cell , 1993, Cell.

[7]  B. Wilkinson,et al.  Determination of the Transmembrane Topology of Yeast Sec61p, an Essential Component of the Endoplasmic Reticulum Translocation Complex* , 1996, The Journal of Biological Chemistry.

[8]  R. Haguenauer‐Tsapis,et al.  Membrane topology of the yeast uracil permease , 1996, Molecular microbiology.

[9]  M. Aebi,et al.  The STT3 protein is a component of the yeast oligosaccharyltransferase complex , 1997, Molecular and General Genetics MGG.

[10]  G. Heijne,et al.  Divergent evolution of membrane protein topology: the Escherichia coli RnfA and RnfE homologues. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Piper,et al.  The Iron Transporter Fth1p Forms a Complex with the Fet5 Iron Oxidase and Resides on the Vacuolar Membrane* , 1999, The Journal of Biological Chemistry.

[12]  R. Wozniak,et al.  Topology and Functional Domains of the Yeast Pore Membrane Protein Pom152p* , 1999, The Journal of Biological Chemistry.

[13]  A. Scheinost,et al.  Transmembrane Topology of Pmt1p, a Member of an Evolutionarily Conserved Family of Protein O-Mannosyltransferases* , 1999, The Journal of Biological Chemistry.

[14]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[15]  P. Ljungdahl,et al.  A Method for Determining the in VivoTopology of Yeast Polytopic Membrane Proteins Demonstrates That Gap1p Fully Integrates into the Membrane Independently of Shr3p* , 2000, The Journal of Biological Chemistry.

[16]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[17]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[18]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[19]  S. Brunak,et al.  Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. , 2000, Journal of molecular biology.

[20]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[21]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[22]  D. Wolf,et al.  Membrane Topology and Function of Der3/Hrd1p as a Ubiquitin-Protein Ligase (E3) Involved in Endoplasmic Reticulum Degradation* , 2001, The Journal of Biological Chemistry.

[23]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[24]  R. Reithmeier,et al.  Expression and characterization of the anion transporter homologue YNL275w in Saccharomyces cerevisiae. , 2001, American journal of physiology. Cell physiology.

[25]  S. Michaelis,et al.  The Multispanning Membrane Protein Ste24p Catalyzes CAAX Proteolysis and NH2-terminal Processing of the Yeast a-Factor Precursor* , 2001, The Journal of Biological Chemistry.

[26]  S H White,et al.  MPtopo: A database of membrane protein topology , 2001, Protein science : a publication of the Protein Society.

[27]  S. Michaelis,et al.  Topological and mutational analysis of Saccharomyces cerevisiae Ste14p, founding member of the isoprenylcysteine carboxyl methyltransferase family. , 2001, Molecular biology of the cell.

[28]  F. Faulhammer,et al.  Retention of the Yeast Sac1p Phosphatase in the Endoplasmic Reticulum Causes Distinct Changes in Cellular Phosphoinositide Levels and Stimulates Microsomal ATP Transport* , 2002, The Journal of Biological Chemistry.

[29]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[30]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[31]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[32]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[33]  C. Hollenberg,et al.  ATF/CREB sites present in sub-telomeric regions of Saccharomyces cerevisiae chromosomes are part of promoters and act as UAS/URS of highly conserved COS genes. , 2002, Journal of molecular biology.

[34]  C. Jacq,et al.  Ammonia pulses and metabolic oscillations guide yeast colony development. , 2002, Molecular biology of the cell.

[35]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[36]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[37]  A. Kimura,et al.  Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing , 2002, Nature Genetics.

[38]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[39]  G. von Heijne,et al.  Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Gunnar von Heijne,et al.  Topology Models for 37 Saccharomyces cerevisiaeMembrane Proteins Based on C-terminal Reporter Fusions and Predictions* , 2003, The Journal of Biological Chemistry.

[41]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[42]  Anders Blomberg,et al.  High-resolution yeast phenomics resolves different physiological features in the saline response , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Albert Sickmann,et al.  The proteome of Saccharomyces cerevisiae mitochondria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Krogh,et al.  Reliability measures for membrane protein topology prediction algorithms. , 2003, Journal of molecular biology.

[45]  T. Stevens,et al.  Topological Characterization of the c, c′, and c″ Subunits of the Vacuolar ATPase from the Yeast Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[46]  R. Hitt,et al.  Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. , 2004, FEMS yeast research.

[47]  A. Elofsson,et al.  Best α‐helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information , 2004 .

[48]  Kara Dolinski,et al.  Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms , 2004, Nucleic Acids Res..

[49]  Gunnar von Heijne,et al.  Experimentally constrained topology models for 51,208 bacterial inner membrane proteins. , 2005, Journal of molecular biology.

[50]  William Stafford Noble,et al.  Large-scale identification of yeast integral membrane protein interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Albert Sickmann,et al.  Pam17 Is Required for Architecture and Translocation Activity of the Mitochondrial Protein Import Motor , 2005, Molecular and Cellular Biology.

[52]  G. Bleve,et al.  Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein. , 2005, The Biochemical journal.

[53]  Dmitrij Frishman,et al.  The PEDANT genome database in 2005 , 2004, Nucleic Acids Res..

[54]  G. von Heijne,et al.  Global Topology Analysis of the Escherichia coli Inner Membrane Proteome , 2005, Science.

[55]  Eugene Berezikov,et al.  CONREAL web server: identification and visualization of conserved transcription factor binding sites , 2005, Nucleic Acids Res..

[56]  G. von Heijne,et al.  Membrane Topology of the STT3 Subunit of the Oligosaccharyl Transferase Complex* , 2005, Journal of Biological Chemistry.

[57]  Anders Blomberg,et al.  Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Gunnar von Heijne,et al.  Identification and evolution of dual-topology membrane proteins , 2006, Nature Structural &Molecular Biology.

[59]  Lukas Käll,et al.  A general model of G protein‐coupled receptor sequences and its application to detect remote homologs , 2006, Protein science : a publication of the Protein Society.