In situ proteolysis for protein crystallization and structure determination

We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain.

[1]  C. Koth,et al.  Use of limited proteolysis to identify protein domains suitable for structural analysis. , 2003, Methods in enzymology.

[2]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Automated Main-chain Model Building by Template Matching and Iterative Fragment Extension , 2022 .

[3]  Samuel H. Wilson,et al.  Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. , 1994, Science.

[4]  Wladek Minor,et al.  HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. , 2006, Acta crystallographica. Section D, Biological crystallography.

[5]  F. Jurnak,et al.  Biochemical and structural studies of the tetragonal crystalline modification of the Escherichia coli elongation factor Tu. , 1980, The Journal of biological chemistry.

[6]  L. Tong,et al.  Crystal Structure of 1-Deoxy-d-xylulose 5-Phosphate Synthase, a Crucial Enzyme for Isoprenoids Biosynthesis* , 2007, Journal of Biological Chemistry.

[7]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[8]  D. Jayatilaka,et al.  Are intramolecular dynamic electron correlation effects detectable in X-ray diffraction experiments on molecular crystals? , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[9]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[10]  A. Mondragón,et al.  Structure of the N‐terminal fragment of topoisomerase V reveals a new family of topoisomerases , 2006, The EMBO journal.

[11]  T. Bestor,et al.  Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. , 2001, Nucleic acids research.

[12]  V S Lamzin,et al.  ARP/wARP and molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[13]  R. Huber,et al.  Crystallographic structure studies of an IgG molecule and an Fc fragment , 1976, Nature.

[14]  Steven L. Cohen,et al.  Probing the solution structure of the DNA‐binding protein Max by a combination of proteolysis and mass spectrometry , 1995, Protein science : a publication of the Protein Society.

[15]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[16]  A. Joachimiak,et al.  Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. , 2001, Structure.

[17]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[18]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[19]  Zbyszek Otwinowski,et al.  The integration of data reduction and structure solution - from diffraction images to an initial model in minutes , 2005 .

[20]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.