An Imperfect microbeam under an axial Load and Electric excitation: nonlinear Phenomena and Dynamical Integrity

This work deals with the nonlinear dynamics of a microelectromechanical system constituted by an imperfect microbeam under an axial load and an electric excitation. The device is characterized by a...

[1]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[2]  J. M. T. Thompson,et al.  Fractal Control Boundaries of Driven Oscillators and Their Relevance to Safe Engineering Design , 1991 .

[3]  STEFANO LENCI,et al.  Nonlinear Phenomena in the Single-Mode Dynamics of a Cable-Supported Beam , 2009, Int. J. Bifurc. Chaos.

[4]  Stefano Lenci,et al.  Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell , 2011 .

[5]  Stefano Lenci,et al.  Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam , 2006 .

[6]  Romesh C. Batra,et al.  Symmetry breaking, snap-through and pull-in instabilities under dynamic loading of microelectromechanical shallow arches , 2009 .

[7]  Harold G. Craighead,et al.  The pull-in behavior of electrostatically actuated bistable microstructures , 2008 .

[8]  Stefano Lenci,et al.  Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective , 2011 .

[9]  E. Tyrkiel,et al.  Sequences of Global Bifurcations and the Related Outcomes after Crisis of the Resonant Attractor in a Nonlinear Oscillator , 1997 .

[10]  Stefano Lenci,et al.  Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators , 2005 .

[11]  Soliman,et al.  Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  Giuseppe Rega,et al.  Numerical and geometrical analysis of bifurcation and chaos for an asymmetric elastic nonlinear oscillator , 1995 .

[13]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  Mohammad I. Younis,et al.  An Efficient Reduced-Order Model to Investigate the Behavior of an Imperfect Microbeam Under Axial Load and Electric Excitation , 2013 .

[15]  Wanda Szemplińska-Stupnicka Cross-well chaos and escape phenomena in driven oscillators , 1992 .

[16]  J. M. T. Thompson,et al.  Integrity measures quantifying the erosion of smooth and fractal basins of attraction , 1989 .

[17]  Hans Troger,et al.  Dimension Reduction of Dynamical Systems: Methods, Models, Applications , 2005 .

[18]  Ali H. Nayfeh,et al.  Dynamic pull-in phenomenon in MEMS resonators , 2007 .

[19]  Stefano Lenci,et al.  Optimal Control of Nonregular Dynamics in a Duffing Oscillator , 2003 .

[20]  Stefano Lenci,et al.  Competing Dynamic Solutions in a Parametrically Excited Pendulum: Attractor Robustness and Basin Integrity , 2007 .

[21]  ALI H. NAYFEH,et al.  Reduced-Order Models for MEMS Applications , 2005 .

[22]  Celso Grebogi,et al.  Erosion of the safe basin for the transversal oscillations of a suspension bridge , 2003 .

[23]  Slava Krylov,et al.  Dynamic stability of electrostatically actuated initially curved shallow micro beams , 2010 .

[24]  Wanda Szemplinska-Stupnicka,et al.  The Oscillation-rotation attractors in the Forced Pendulum and their Peculiar Properties , 2002, Int. J. Bifurc. Chaos.

[25]  Mohammad I. Younis,et al.  Dynamical Integrity for Interpreting Experimental Data and Ensuring Safety in Electrostatic MEMS , 2013 .

[26]  J. R. de Souza Junior,et al.  An Investigation into Mechanisms of Loss of Safe Basins in a 2 D.O.F. Nonlinear Oscillator , 2002 .

[27]  J. M. T. Thompson,et al.  BASIN EROSION IN THE TWIN-WELL DUFFING OSCILLATOR: TWO DISTINCT BIFURCATION SCENARIOS , 1992 .

[28]  H. Ouakad,et al.  The dynamic behavior of MEMS arch resonators actuated electrically , 2010 .