Two Constructions on Limits of Entropy Functions
暂无分享,去创建一个
[1] G. Bennett. Probability Inequalities for the Sum of Independent Random Variables , 1962 .
[2] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[3] A. Ingleton,et al. Conditions for representability and transversality of matroids , 1971 .
[4] T. Helgason. Aspects of the theory of hypermatroids , 1974 .
[5] C. McDiarmid. Rado's theorem for polymatroids , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] Satoru Fujishige,et al. Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..
[7] H. Q. Nguyen. Semimodular functions and combinatorial geometries , 1978 .
[8] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[9] Theory of Matroids: Semimodular Functions , 1986 .
[10] Tom Brylawski. Theory of Matroids: Constructions , 1986 .
[11] P. Tichý. Constructions , 1986, Philosophy of Science.
[12] Josh Benaloh,et al. Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.
[13] Mitsuru Ito,et al. Secret sharing scheme realizing general access structure , 1989 .
[14] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[15] Paul D. Seymour. On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.
[16] James G. Oxley,et al. Matroid theory , 1992 .
[17] Amos Beimel,et al. Universally Ideal Secret Sharing Schemes (Preliminary Version) , 1992, CRYPTO.
[18] F. Matús. PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .
[19] Amos Beimel,et al. Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.
[20] Frantisek Matús,et al. Extreme convex set functions with many nonnegative differences , 1994, Discret. Math..
[21] G. R. Blakley,et al. General Perfect Secret Sharing Schemes , 1995, CRYPTO.
[22] Milan Studený,et al. Conditional Independences among Four Random Variables I , 1995, Combinatorics, Probability and Computing.
[23] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[24] K. Martin,et al. Perfect secret sharing schemes on five participants , 1996 .
[25] H. Narayanan. Submodular functions and electrical networks , 1997 .
[26] Zhen Zhang,et al. A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.
[27] László Csirmaz,et al. The Size of a Share Must Be Large , 1994, Journal of Cryptology.
[28] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[29] Alexei E. Ashikhmin,et al. Almost Affine Codes , 1998, Des. Codes Cryptogr..
[30] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[31] Jovan Dj. Golic. On Matroid Characterization of Ideal Secret Sharing Schemes , 1998, Journal of Cryptology.
[32] Rudolf Ahlswede,et al. Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.
[33] Keith M. Martin,et al. Combinatorial models for perfect secret sharing schemes , 1998 .
[34] František Matúš,et al. Conditional Independences among Four Random Variables III: Final Conclusion , 1999, Combinatorics, probability & computing.
[35] Frantisek Matús,et al. Matroid representations by partitions , 1999, Discret. Math..
[36] F. Mattt,et al. Conditional Independences among Four Random Variables Iii: Final Conclusion , 1999 .
[37] Nikolai K. Vereshchagin,et al. Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..
[39] Frantisek Matús. Excluded minors for Boolean polymatroids , 2001, Discret. Math..
[40] Raymond W. Yeung,et al. A class of non-Shannon-type information inequalities and their applications , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[41] Nikolai K. Vereshchagin,et al. A new class of non-Shannon-type inequalities for entropies , 2002, Commun. Inf. Syst..
[42] Raymond W. Yeung,et al. On a relation between information inequalities and group theory , 2002, IEEE Trans. Inf. Theory.
[43] Raymond W. Yeung,et al. A First Course in Information Theory , 2002 .
[44] M. Lunelli,et al. Representation of matroids , 2002, math/0202294.
[45] Zhen Zhang. On a new non-Shannon type information inequality , 2003, Commun. Inf. Syst..
[46] Radim Lněnička,et al. On the tightness of the Zhang-Yeung inequality for Gaussian vectors , 2003, Commun. Inf. Syst..
[47] Siaw-Lynn Ng. A Representation of a Family of Secret Sharing Matroids , 2003, Des. Codes Cryptogr..
[48] Imre Csiszár,et al. Secrecy capacities for multiple terminals , 2004, IEEE Transactions on Information Theory.
[49] Ernest F. Brickell,et al. On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.
[50] S. Smale,et al. Shannon sampling and function reconstruction from point values , 2004 .
[51] Keith M. Martin,et al. Geometrical contributions to secret sharing theory , 2004 .
[52] Carles Padró,et al. Secret Sharing Schemes with Three or Four Minimal Qualified Subsets , 2005, Des. Codes Cryptogr..
[53] Frantisek Matús,et al. Piecewise linear conditional information inequality , 2006, IEEE Transactions on Information Theory.
[54] Randall Dougherty,et al. Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.
[55] Frantisek Matús,et al. Adhesivity of polymatroids , 2007, Discret. Math..