Two Constructions on Limits of Entropy Functions

The correspondence between the subvectors of a random vector and their Shannon entropies gives rise to an entropy function. Limits of the entropy functions are closed to convolutions with modular polymatroids, and when integer-valued also to free expansions. The problem of description of the limits of entropy functions is reduced to those limits that correspond to matroids. Related results on entropy functions are reviewed with regard to polymatroid and matroid theories, and perfect and ideal secret sharing

[1]  G. Bennett Probability Inequalities for the Sum of Independent Random Variables , 1962 .

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  A. Ingleton,et al.  Conditions for representability and transversality of matroids , 1971 .

[4]  T. Helgason Aspects of the theory of hypermatroids , 1974 .

[5]  C. McDiarmid Rado's theorem for polymatroids , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[7]  H. Q. Nguyen Semimodular functions and combinatorial geometries , 1978 .

[8]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[9]  Theory of Matroids: Semimodular Functions , 1986 .

[10]  Tom Brylawski Theory of Matroids: Constructions , 1986 .

[11]  P. Tichý Constructions , 1986, Philosophy of Science.

[12]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[13]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[14]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[15]  Paul D. Seymour On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.

[16]  James G. Oxley,et al.  Matroid theory , 1992 .

[17]  Amos Beimel,et al.  Universally Ideal Secret Sharing Schemes (Preliminary Version) , 1992, CRYPTO.

[18]  F. Matús PROBABILISTIC CONDITIONAL INDEPENDENCE STRUCTURES AND MATROID THEORY: BACKGROUND1 , 1993 .

[19]  Amos Beimel,et al.  Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[20]  Frantisek Matús,et al.  Extreme convex set functions with many nonnegative differences , 1994, Discret. Math..

[21]  G. R. Blakley,et al.  General Perfect Secret Sharing Schemes , 1995, CRYPTO.

[22]  Milan Studený,et al.  Conditional Independences among Four Random Variables I , 1995, Combinatorics, Probability and Computing.

[23]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[24]  K. Martin,et al.  Perfect secret sharing schemes on five participants , 1996 .

[25]  H. Narayanan Submodular functions and electrical networks , 1997 .

[26]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[27]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[28]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[29]  Alexei E. Ashikhmin,et al.  Almost Affine Codes , 1998, Des. Codes Cryptogr..

[30]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[31]  Jovan Dj. Golic On Matroid Characterization of Ideal Secret Sharing Schemes , 1998, Journal of Cryptology.

[32]  Rudolf Ahlswede,et al.  Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.

[33]  Keith M. Martin,et al.  Combinatorial models for perfect secret sharing schemes , 1998 .

[34]  František Matúš,et al.  Conditional Independences among Four Random Variables III: Final Conclusion , 1999, Combinatorics, probability & computing.

[35]  Frantisek Matús,et al.  Matroid representations by partitions , 1999, Discret. Math..

[36]  F. Mattt,et al.  Conditional Independences among Four Random Variables Iii: Final Conclusion , 1999 .

[37]  Nikolai K. Vereshchagin,et al.  Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..

[39]  Frantisek Matús Excluded minors for Boolean polymatroids , 2001, Discret. Math..

[40]  Raymond W. Yeung,et al.  A class of non-Shannon-type information inequalities and their applications , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[41]  Nikolai K. Vereshchagin,et al.  A new class of non-Shannon-type inequalities for entropies , 2002, Commun. Inf. Syst..

[42]  Raymond W. Yeung,et al.  On a relation between information inequalities and group theory , 2002, IEEE Trans. Inf. Theory.

[43]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[44]  M. Lunelli,et al.  Representation of matroids , 2002, math/0202294.

[45]  Zhen Zhang On a new non-Shannon type information inequality , 2003, Commun. Inf. Syst..

[46]  Radim Lněnička,et al.  On the tightness of the Zhang-Yeung inequality for Gaussian vectors , 2003, Commun. Inf. Syst..

[47]  Siaw-Lynn Ng A Representation of a Family of Secret Sharing Matroids , 2003, Des. Codes Cryptogr..

[48]  Imre Csiszár,et al.  Secrecy capacities for multiple terminals , 2004, IEEE Transactions on Information Theory.

[49]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[50]  S. Smale,et al.  Shannon sampling and function reconstruction from point values , 2004 .

[51]  Keith M. Martin,et al.  Geometrical contributions to secret sharing theory , 2004 .

[52]  Carles Padró,et al.  Secret Sharing Schemes with Three or Four Minimal Qualified Subsets , 2005, Des. Codes Cryptogr..

[53]  Frantisek Matús,et al.  Piecewise linear conditional information inequality , 2006, IEEE Transactions on Information Theory.

[54]  Randall Dougherty,et al.  Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.

[55]  Frantisek Matús,et al.  Adhesivity of polymatroids , 2007, Discret. Math..