Generalised homogenisation procedures for granular materials

Engineering materials are generally non-homogeneous, yet standard continuum descriptions of such materials are admissible, provided that the size of the non-homogeneities is much smaller than the characteristic length of the deformation pattern. If this is not the case, either the individual non-homogeneities have to be described explicitly or the range of applicability of the continuum concept is extended by including additional variables or degrees of freedom. In the paper the discrete nature of granular materials is modelled in the simplest possible way by means of finite-difference equations. The difference equations may be homogenised in two ways: the simplest approach is to replace the finite differences by the corresponding Taylor expansions. This leads to a Cosserat continuum theory. A more sophisticated strategy is to homogenise the equations by means of a discrete Fourier transformation. The result is a Kunin-type non-local theory. In the following these theories are analysed by considering a model consisting of independent periodic ID chains of solid spheres connected by shear translational and rotational springs. It is found that the Cosserat theory offers a healthy balance between accuracy and simplicity. Kunin’s integral homogenisation theory leads to a non-local Cosserat continuum description that yields an exact solution, but does not offer any real simplification in the solution of the model equations as compared to the original discrete system. The rotational degree of freedom affects the phenomenology of wave propagation considerably. When the rotation is suppressed, only one type of wave,viz. a shear wave, exists. When the restriction on particle rotation is relaxed, the velocity of this wave decreases and another, high velocity wave arises.

[1]  A. Cental Eringen,et al.  Part I – Polar Field Theories , 1976 .

[2]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[3]  D. Heyes,et al.  Distinct Element Simulations and Dynamic Microstructural Imaging of Slow Shearing Granular Flows , 1997 .

[4]  D. Harleman,et al.  One-dimensional models. , 1971 .

[5]  Masao Satake,et al.  Three-Dimensional Discrete Mechanics of Granular Materials , 1997 .

[6]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[7]  A. Eringen,et al.  LINEAR THEORY OF MICROPOLAR ELASTICITY , 1965 .

[8]  W. Nowacki Theory of Micropolar Elasticity , 1986 .

[9]  Xiao Hu,et al.  Structural Integrity and Fracture , 2002 .

[10]  A. Eringen Nonlocal Continuum Mechanics and Some Applications , 1978 .

[11]  J. Jenkins Volume Change in Small Strain Axisymmetric Deformations of a Granular Material , 1988 .

[12]  Hans Muhlhaus,et al.  Continuum models for materials with microstructure , 1995 .

[13]  J. Chandra,et al.  Constitutive Models of Deformation , 1987 .

[14]  Fusao Oka,et al.  Dispersion and wave propagation in discrete and continuous models for granular materials , 1996 .

[15]  I. Kunin Three-dimensional models , 1983 .

[16]  Bernard Cambou Behaviour of granular materials , 1998 .

[17]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[18]  E. Pasternak,et al.  Large deformation cosserat continuum modelling of granulate materials , 2002 .

[19]  W. Nowacki The Linear Theory of Micropolar Elasticity , 1974 .

[20]  J. Kahane Some Random Series of Functions , 1985 .

[21]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[22]  C. Thornton Microscopic approach contributions to constitutive modelling , 2000 .

[23]  Ching S. Chang,et al.  ELASTIC-MATERIAL CONSTANTS FOR ISOTROPIC GRANULAR SOLIDS WITH PARTICLE ROTATION , 1992 .

[24]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[25]  Dimitrios Kolymbas,et al.  Constitutive Modelling of Granular Materials , 2000 .

[26]  Terry Ford,et al.  Progress and Applications , 1993 .

[27]  Mark Kachanov,et al.  Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts , 1992 .

[28]  Ching S. Chang,et al.  Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory , 2001 .

[29]  Shaker A. Meguid,et al.  Asymptotic homogenization of elastic composite materials with a regular structure , 1994 .

[30]  H. Mühlhaus,et al.  On the Reality of Antisymmetric Stresses in Fast Granular Flows , 1997 .

[31]  R. Bathurst,et al.  Micromechanical Aspects of Isotropic Granular Assemblies With Linear Contact Interactions , 1988 .

[32]  P. J. Digby,et al.  The Effective Elastic Moduli of Porous Granular Rocks , 1981 .

[33]  R. Borst,et al.  Micromechanically based higher-order continuum models for granular materials , 2000 .

[34]  B. Cambou,et al.  Micromechanical Approach in Granular Materials , 1998 .

[35]  Arcady Dyskin,et al.  A Cosserat continuum model for layered materials , 1997 .

[36]  A. Eringen Part III – Nonlocal Polar Field Theories , 1976 .

[37]  G. Gudehus A COMPREHENSIVE CONSTITUTIVE EQUATION FOR GRANULAR MATERIALS , 1996 .

[38]  Relevant local variables for the change of scale in granular materials. , 2000 .

[39]  Ching S. Chang Micromechanical Modelling of Constitutive Relations for Granular Material , 1988 .

[40]  J. Sulem,et al.  A continuum model for periodic two‐dimensional block structures , 1997 .

[41]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[42]  René de Borst,et al.  Material Instabilities in Solids , 1998 .

[43]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[44]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[45]  R. Borst,et al.  On Gradient-Enhanced Damage Theories , 1997 .

[46]  Louis Moresi,et al.  Discrete and continuum modelling of granular materials , 2001 .

[47]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[48]  John Arthur Simmons,et al.  FUNDAMENTAL ASPECTS OF DISLOCATION THEORY. VOLUME II. Conference Held at Gaithersburg, Maryland, April 21--25, 1969. , 1970 .

[49]  I. Kunin,et al.  Elastic Media with Microstructure II , 1982 .

[50]  E. Pasternak,et al.  Cosserat continuum modelling of granulate materials , 2001 .

[51]  K. Graff Wave Motion in Elastic Solids , 1975 .

[52]  Hans Muhlhaus,et al.  8 – Continuum Models for Layered and Blocky Rock , 1993 .

[53]  Gérard A. Maugin,et al.  The method of virtual power in continuum mechanics: Application to coupled fields , 1980 .

[54]  E. Pasternak,et al.  Cosserat and non-local continuum models for problems of wave propagation in fractured materials , 2000 .

[55]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[56]  A. Party Some theoretical principles , 1964 .

[57]  Ching S. Chang,et al.  Micro-mechanical modelling of granular material. Part 2: Plane wave propagation in infinite media , 2001 .

[58]  K. Walton,et al.  The effective elastic moduli of a random packing of spheres , 1987 .

[59]  L. Khoroshun Methods of theory of random functions in problems of macroscopic properties of microinhomogeneous media , 1978 .

[60]  A. Dyskin,et al.  Virial expansions in problems of effective characteristics. 1. General concepts , 1994 .

[61]  J. Hudson Overall properties of heterogeneous material , 1991 .

[62]  Norman A. Fleck,et al.  IUTAM Symposium on Mechanics of Granular and Porous Materials : proceedings of the IUTAM Symposium held in Cambridge, U.K., 15-17 July 1996 , 1997 .

[63]  Zvi Hashin,et al.  The differential scheme and its application to cracked materials , 1988 .